Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1455-1466, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621929

RESUMO

Ulcerative colitis is a chronic, recurrent, and nonspecific intestinal inflammatory disease, which is difficult to cure and has the risk of deterioration into related tumors. Long-term chronic inflammatory stimulation can increase the risk of cancerization. With the signaling pathway as a key link in the regulation of tumor microenvironments, nuclear factor-kappa B(NF-κB) is an important regulator of intestinal inflammation. It can also be co-regulated as downstream factors of other signaling pathways, such as TLR4, MAPK, STAT, PI3K, and so on. At present, a large number of animal experiments have proved that traditional Chinese medicine(TCM) can reduce inflammation by interfering with NF-κB-related signaling pathways, improve intestinal inflammation, and inhibit the progression of inflammation to tumors. This article reviewed the relationship between NF-κB-related signaling pathways and the intervention mechanism of TCM, so as to provide a reference for the clinical treatment of ulcerative colitis and the optimization of related cancer prevention strategies.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Animais , Colite Ulcerativa/complicações , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Inflamação , Medicina Tradicional Chinesa , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Development ; 147(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32094113

RESUMO

Noradrenaline belongs to the monoamine system and is involved in cognition and emotional behaviors. Phox2a and Phox2b play essential but non-redundant roles during development of the locus coeruleus (LC), the main noradrenergic (NA) neuron center in the mammalian brain. The ubiquitin E3 ligase Rnf220 and its cofactor Zc4h2 participate in ventral neural tube patterning by modulating Shh/Gli signaling, and ZC4H2 mutation is associated with intellectual disability, although the mechanisms for this remain poorly understood. Here, we report that Zc4h2 and Rnf220 are required for the development of central NA neurons in the mouse brain. Both Zc4h2 and Rnf220 are expressed in developing LC-NA neurons. Although properly initiated at E10.5, the expression of genes associated with LC-NA neurons is not maintained at the later embryonic stages in mice with a deficiency of either Rnf220 or Zc4h2 In addition, we show that the Rnf220/Zc4h2 complex monoubiquitylates Phox2a/Phox2b, a process required for the full transcriptional activity of Phox2a/Phox2b. Our work reveals a role for Rnf220/Zc4h2 in regulating LC-NA neuron development, and this finding may be helpful for understanding the pathogenesis of ZC4H2 mutation-associated intellectual disability.


Assuntos
Neurônios Adrenérgicos/fisiologia , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurogênese/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/genética , Neurônios Adrenérgicos/metabolismo , Animais , Diferenciação Celular/genética , Embrião de Galinha , Embrião de Mamíferos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Norepinefrina/metabolismo
3.
Cereb Cortex ; 32(11): 2321-2331, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546353

RESUMO

Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.


Assuntos
Córtex Cerebral , Neurônios , Animais , Corpo Celular/metabolismo , Córtex Cerebral/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz , Camundongos , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptor EphA7 , Fatores de Transcrição/metabolismo
4.
Mol Psychiatry ; 26(6): 2514-2532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303946

RESUMO

Genome-wide association studies uncovered the association of ZNF804A (Zinc-finger protein 804A) with schizophrenia (SZ). In vitro data have indicated that ZNF804A might exert its biological roles by regulating spine and neurite morphogenesis. However, no in vivo data are available for the role of ZNF804A in psychiatric disorders in general, SZ in particular. We generated ZFP804A mutant mice, and they showed deficits in contextual fear and spatial memory. We also observed the sensorimotor gating impairment, as revealed by the prepulse inhibition test, but only in female ZFP804A mutant mice from the age of 6 months. Notably, the PPI difference between the female mutant and control mice was no longer existed with the administration of Clozapine or after the ovariectomy. Hippocampal long-term potentiation was normal in both genders of the mutant mice. Long-term depression was absent in male mutants, but facilitated in the female mutants. Protein levels of hippocampal serotonin-6 receptor and GABAB1 receptor were increased, while those of cortical dopamine 2 receptor were decreased in the female mutants with no obvious changes in the male mutants. Moreover, the spine density was reduced in the cerebral cortex and hippocampus of the mutant mice. Knockdown of ZFP804A impaired the neurite morphogenesis of cortical and hippocampal neurons, while its overexpression enhanced neurite morphogenesis only in the cortical neurons in vitro. Our data collectively support the idea that ZFP804A/ZNF804A plays important roles in the cognitive functions and sensorimotor gating, and its dysfunction may contribute to SZ, particularly in the female patients.


Assuntos
Esquizofrenia , Animais , Medo , Feminino , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Neurônios/metabolismo , Esquizofrenia/genética
5.
Biochem Biophys Res Commun ; 508(3): 959-964, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545636

RESUMO

Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal , Hipotálamo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Serotonina/fisiologia , Animais , Colo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Ocitocina/sangue , Hipófise/metabolismo , Triptofano Hidroxilase/genética
6.
J Cell Sci ; 125(Pt 18): 4320-32, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22718343

RESUMO

The locus coeruleus (LC) is the main source of noradrenaline in the brain and is implicated in a broad spectrum of physiological and behavioral processes. However, genetic pathways controlling the development of noradrenergic neurons in the mammalian brain are largely unknown. We report here that Rbpj, a key nuclear effector in the Notch signaling pathway, plays an essential role in LC neuron development in the mouse. Conditional inactivation of Rbpj in the dorsal rhombomere (r) 1, where LC neurons are born, resulted in a dramatic increase in the number of Phox2a- and Phox2b-expressing early-differentiating LC neurons, and dopamine-ß-hydroxylase- and tyrosine-hydroxylase-expressing late-differentiating LC neurons. In contrast, other neuronal populations derived from the dorsal r1 were either reduced or unchanged. In addition, a drastic upregulation of Ascl1, an essential factor for noradrenergic neurogenesis, was observed in dorsal r1 of conditional knockout mice. Through genomic sequence analysis and EMSA and ChIP assays, a conserved Rbpj-binding motif was identified within the Ascl1 promoter. A luciferase reporter assay revealed that Rbpj per se could induce Ascl1 transactivation but this effect was counteracted by its downstream-targeted gene Hes1. Moreover, our in vitro gene transfection and in ovo electroporation assays showed that Rbpj upregulated Ascl1 expression when Hes1 expression was knocked down, although it also exerted a repressive effect on Ascl1 expression in the presence of Hes1. Thus, our results provide the first evidence that Rbpj functions as a key modulator of LC neuron development by regulating Ascl1 expression directly, and indirectly through its target gene Hes1.


Assuntos
Neurônios Adrenérgicos/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Neurogênese , Receptores Notch/metabolismo , Transdução de Sinais , Neurônios Adrenérgicos/patologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Transcrição COUP/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperplasia , Locus Cerúleo/embriologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , Células-Tronco/metabolismo
7.
Nat Cell Biol ; 9(2): 184-92, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17237772

RESUMO

Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer (DCC) and neogenin, a DCC-related protein. Expression of Myo X redistributes DCC to the cell periphery or to the tips of neurites, whereas its silencing prevents DCC distribution in neurites. Moreover, expression of DCC, but not neogenin, stimulates Myo X-mediated formation and elongation of filopodia, suggesting that Myo X function may be differentially regulated by DCC and neogenin. The involvement of Myo X in netrin-1 function was further supported by the effects of inhibiting Myo X function in neurons. Cortical explants derived from mouse embryos expressing a motor-less Myo X exhibit reduced neurite outgrowth in response to netrin-1 and chick commissural neurons expressing the motor-less Myo X, or in which Myo X is silenced using microRNA (miRNA), show impaired axon projection in vivo. Taken together, these results identify a novel role for Myo X in regulating netrin-1 function.


Assuntos
Axônios/fisiologia , Miosinas/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células COS , Linhagem Celular , Embrião de Galinha , Chlorocebus aethiops , Humanos , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/farmacologia , Dados de Sequência Molecular , Miosinas/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Receptores de Netrina , Netrina-1 , Ratos , Proteínas Supressoras de Tumor/farmacologia
8.
Huan Jing Ke Xue ; 45(3): 1684-1691, 2024 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-38471880

RESUMO

The large input of mulch film and organic fertilizer have led to increasingly serious microplastic pollution in farmland soil of China. In this study, the microplastic pollution of peanut farmland in Dezhou City, Shandong Province was investigated. The effects of different mulching years (0, 3, 5, and 8 years) and organic fertilizer application on the abundance, particle size, color, and shape of microplastics in farmland soil were analyzed. The results showed that the average abundances of microplastics in peanut soil were 65.33, 316.00, 1 098.67, and 1 346.34 n·kg-1, respectively, after 0, 3, 5, and 8 years of film mulching. The abundance of microplastics decreased with the increase in soil depth. The abundance of microplastics in 0-10, 10-20, and 20-30 cm topsoil was 1 076.00, 603.5, and 440.25 n·kg-1, respectively, and the abundance of microplastics increased significantly with increasing years of film mulching and organic fertilizer application (P<0.05). The particle size of microplastics in the sample plot <1 mm accounted for 77.30% of the total content, and with the increase in film mulching age, the proportion of microplastics with small particle size (<1 mm) increased significantly (P < 0.05). With the increase in soil depth, the proportion of microplastics with small particle size also gradually increased, whereas the application of organic fertilizer had no significant effect on the particle size of microplastics. The color of microplastics in the plot was mainly transparent (49.77%), followed by black (16.35%) and white (16.27%). The planting age and organic fertilizer application had no significant effect on the color of microplastics in the soil (P > 0.05), but the mulching age significantly increased the proportion of transparent microplastics. The abundance proportion of the five types of microplastics were 49.77%, 25.41%, 19.15%, 3.26%, and 2.41%, respectively. These field soil microplastics were mainly composed of polyethylene (PE), polypropylene (PP), and polystyrene (PS) polymers, accounting for 21.37%, 18.57%, and 19.77% of the total, respectively. Therefore, microplastics were widely present in the soil of the peanut field cultivated layer in Dezhou, Shandong, and the applications of mulch film and organic fertilizer were the main source. This study provides an important basis for the prevention and control of soil microplastic pollution in peanut fields.

9.
Sci Adv ; 10(6): eadk3931, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324685

RESUMO

Maldevelopment of oligodendroglia underlies neural developmental disorders such as leukodystrophy. Precise regulation of the activity of specific transcription factors (TFs) by various posttranslational modifications (PTMs) is required to ensure proper oligodendroglial development and myelination. However, the role of ubiquitination of these TFs during oligodendroglial development is yet unexplored. Here, we find that RNF220, a known leukodystrophy-related E3 ubiquitin ligase, is required for oligodendroglial development. RNF220 depletion in oligodendrocyte lineage cells impedes oligodendrocyte progenitor cell proliferation, differentiation, and (re)myelination, which consequently leads to learning and memory defects. Mechanistically, RNF220 targets Olig1/2 for K63-linked polyubiquitination and stabilization during oligodendroglial development. Furthermore, in a knock-in mouse model of leukodystrophy-related RNF220R365Q mutation, the ubiquitination and stabilization of Olig proteins are deregulated in oligodendroglial cells. This results in pathomimetic oligodendroglial developmental defects, impaired myelination, and abnormal behaviors. Together, our evidence provides an alternative insight into PTMs of oligodendroglial TFs and how this essential process may be implicated in the etiology of leukodystrophy.


Assuntos
Doenças Desmielinizantes , Neurogênese , Camundongos , Animais , Diferenciação Celular/genética , Ubiquitinação , Oligodendroglia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças Desmielinizantes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Sci Total Environ ; 946: 174147, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38909800

RESUMO

Environmental behaviors of heavy metal in soil are strongly influenced by seasonal freeze-thaw events at the mid-high altitudes. However, the potential impact mechanisms of freeze-thaw cycles on the vertical migration of heavy metal are still poor understood. This study aimed to explore how exogenous cadmium (Cd) migrated and remained in soil during the in-situ seasonal freeze-thaw action using rare earth elements (REEs) as tracers. As a comparison, soil which was incubated in the controlled laboratory (25 °C) was employed. Although there was no statistically significant difference in the Cd levels of different soil depths under different treatments, the original aggregate sources of Cd in the 5-10 cm and 10-15 cm soil layers differed. From the distributions of REEs in soil profile, it can be known that Cd in the subsurface of field incubated soil was mainly from the breakdown of >0.50 mm aggregates, while it was mainly from the <0.106 mm aggregates for the laboratory incubated soil. Furthermore, the dissolved and colloidal Cd concentrations were 0.47 µg L-1 and 0.62 µg L-1 in the leachates from field incubated soil than those from control soil (0.21 µg L-1 and 0.43 µg L-1). Additionally, the colloid-associated Cd in the leachate under field condition was mainly from the breakdown of >0.25 mm aggregates and the direct migration of <0.106 mm aggregates, while it was the breakdown of >0.50 mm and the direct migration of <0.106 mm aggregates for the soil under laboratory condition. Our results for the first time provided insights into the fate of exogenous contaminants in seasonal frozen regions using the rare earth element tracing method.

11.
Cell Death Dis ; 15(5): 343, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760361

RESUMO

The corticospinal tract (CST) is the principal neural pathway responsible for conducting voluntary movement in the vertebrate nervous system. Netrin-1 is a well-known guidance molecule for midline crossing of commissural axons during embryonic development. Families with inherited Netrin-1 mutations display congenital mirror movements (CMM), which are associated with malformations of pyramidal decussation in most cases. Here, we investigated the role of Netrin-1 in CST formation by generating conditional knockout (CKO) mice using a Gfap-driven Cre line. A large proportion of CST axons spread laterally in the ventral medulla oblongata, failed to decussate and descended in the ipsilateral spinal white matter of Ntn1Gfap CKO mice. Netrin-1 mRNA was expressed in the ventral ventricular zone (VZ) and midline, while Netrin-1 protein was transported by radial glial cells to the ventral medulla, through which CST axons pass. The level of transported Netrin-1 protein was significantly reduced in Ntn1Gfap CKO mice. In addition, Ntn1Gfap CKO mice displayed increased symmetric movements. Our findings indicate that VZ-derived Netrin-1 deletion leads to an abnormal trajectory of the CST in the spinal cord due to the failure of CST midline crossing and provides novel evidence supporting the idea that the Netrin-1 signalling pathway is involved in the pathogenesis of CMM.


Assuntos
Camundongos Knockout , Netrina-1 , Tratos Piramidais , Animais , Netrina-1/metabolismo , Netrina-1/genética , Camundongos , Tratos Piramidais/metabolismo , Tratos Piramidais/patologia , Axônios/metabolismo , Axônios/patologia
12.
Cereb Cortex ; 22(7): 1510-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21885532

RESUMO

Self-avoidance is a mechanism by which dendrites from the same neuron repel one another in order to establish uniform coverage of the dendritic field. The importance of self-avoidance for the development of complex arborization patterns has been highlighted by studies of Drosophila sensory and mouse retinal neurons. However, it is unclear whether branch patterning in the mammalian central nervous system is also governed by this strategy. We reduced Satb2 expression in a population of layer II/III pyramidal neurons in vivo by RNA interference and found that the somas of Satb2-deficient neurons clumped together, and their dendrites failed to expand laterally but instead formed fascicles. Furthermore, experiments showed that reducing Satb2 caused the adhesion of not only neighboring Satb2-deficient neurons but also neighboring wild-type neurons. Our results indicate a cell autonomous and non-cell autonomous role for Satb2 in regulating the adhesive and/or repulsive properties of cerebral pyramidal neurons.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Fatores de Transcrição/fisiologia , Animais , Animais Recém-Nascidos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Crescimento Celular , Células Cultivadas , Camundongos
13.
IBRO Neurosci Rep ; 14: 160-184, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388497

RESUMO

Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.

14.
Cell Death Dis ; 14(5): 309, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149633

RESUMO

To establish functional circuitry, neurons settle down in a particular spatial domain by spacing their cell bodies, which requires proper positioning of the soma and establishing of a zone with unique connections. Deficits in this process are implicated in neurodevelopmental diseases. In this study, we examined the function of EphB6 in the development of cerebral cortex. Overexpression of EphB6 via in utero electroporation results in clumping of cortical neurons, while reducing its expression has no effect. In addition, overexpression of EphrinB2, a ligand of EphB6, also induces soma clumping in the cortex. Unexpectedly, the soma clumping phenotypes disappear when both of them are overexpressed in cortical neurons. The mutual inhibitory effect of EphB6/ EphrinB2 on preventing soma clumping is likely to be achieved via interaction of their specific domains. Thus, our results reveal a combinational role of EphrinB2/EphB6 overexpression in controlling soma spacing in cortical development.


Assuntos
Efrina-B2 , Receptor EphB6 , Receptor EphB6/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Corpo Celular/metabolismo , Neurônios/metabolismo
15.
Front Cell Dev Biol ; 10: 831365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399523

RESUMO

Rnf220 is reported to regulate the patterning of the ventral spinal neural tube in mice. The brainstem has divergent connections with peripheral and central targets and contains unique internal neuronal groups, but the role of Rnf220 in the early development of the hindbrain has not been explored. In this study, Nestin-Cre-mediated conditional knockout (Rnf220 Nestin CKO) mice were used to examine if Rnf220 is involved in the early morphogenesis of the hindbrain. Rnf220 showed restricted expression in the ventral half of ventricular zone (VZ) of the hindbrain at embryonic day (E) 10.5, and as development progressed, Rnf220-expressing cells were also present in the mantle zone outside the VZ at E12.5. In Rnf220 Nestin CKO embryos, alterations of progenitor domains in the ventral VZ were observed at E10.5. There were significant reductions of the p1 and p2 domains shown by expression of Dbx1, Olig2, and Nkx6.1, accompanied by a ventral expansion of the Dbx1+ p0 domain and a dorsal expansion of the Nkx2.2+ p3 domain. Different from the case in the spinal cord, the Olig2+ pMN (progenitors of somatic motor neuron) domain shifted and expanded dorsally. Notably, the total range of the ventral VZ and the extent of the dorsal tube were unchanged. In addition, the post-mitotic cells derived from their corresponding progenitor domain, including oligodendrocyte precursor cells (OPCs) and serotonergic neurons (5-HTNs), were also changed in the same trend as the progenitor domains do in the CKO embryos at E12.5. In summary, our data suggest similar functions of Rnf220 in the hindbrain dorsoventral (DV) patterning as in the spinal cord with different effects on the pMN domain. Our work also reveals novel roles of Rnf220 in the development of 5-HTNs and OPCs.

16.
Sci Adv ; 8(39): eabq4736, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179027

RESUMO

The accurate expression of postsynaptic AMPA receptors (AMPARs) is critical for information processing in the brain, and ubiquitination is a key regulator for this biological process. However, the roles of E3 ubiquitin ligases in the regulation of AMPARs are poorly understood. Here, we find that RNF220 directly interacts with AMPARs to meditate their polyubiquitination, and RNF220 knockout specifically increases AMPAR protein levels, thereby enhancing basal synaptic activity while impairing synaptic plasticity. Moreover, depending on its E3 ubiquitin ligase activity, RNF220 represses AMPAR-mediated excitatory synaptic responses and their neuronal surface expression. Furthermore, learning and memory are altered in forebrain RNF220-deficient mice. In addition, two neuropathology-related RNF220 variants fail to repress excitatory synaptic activity because of the incapability to regulate AMPAR ubiquitination due to their attenuated interaction. Together, we identify RNF220 as an E3 ubiquitin ligase for AMPARs and establish its substantial role in excitatory synaptic transmission and brain function.

17.
Schizophr Bull ; 48(4): 804-813, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35522199

RESUMO

OBJECTIVES: Despite of strenuous research in the past decades, the etiology of schizophrenia (SCZ) still remains incredibly controversial. Previous genetic analysis has uncovered a close association of Unc-51 like kinase 4 (ULK4), a family member of Unc-51-like serine/threonine kinase, with SCZ. However, animal behavior data which may connect Ulk4 deficiency with psychiatric disorders, particularly SCZ are still missing. METHODS: We generated Emx1-Cre:Ulk4flox/flox conditional knockout (CKO) mice, in which Ulk4 was deleted in the excitatory neurons of cerebral cortex and hippocampus. RESULTS: The cerebral cellular architecture was maintained but the spine density of pyramidal neurons was reduced in Ulk4 CKO mice. CKO mice showed deficits in the spatial and working memories and sensorimotor gating. Levels of p-Akt and p-GSK-3α/ß were markedly reduced in the CKO mice indicating an elevation of GSK-3 signaling. Mechanistically, Ulk4 may regulate the GSK-3 signaling via putative protein complex comprising of two phosphatases, protein phosphatase 2A (PP2A) and 1α (PP1α). Indeed, the reduction of p-Akt and p-GSK-3α/ß was rescued by administration of inhibitor acting on PP2A and PP1α in CKO mice. CONCLUSIONS: Our data identified potential downstream signaling pathway of Ulk4, which plays important roles in the cognitive functions and when defective, may promote SCZ-like pathogenesis and behavioral phenotypes in mice.


Assuntos
Proteínas Serina-Treonina Quinases , Esquizofrenia , Animais , Cognição , Deleção de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Transdução de Sinais
18.
Cell Rep ; 39(3): 110724, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443189

RESUMO

PTEN is known as a tumor suppressor and plays essential roles in brain development. Here, we report that PTEN in primary sensory neurons is involved in processing itch and thermal information in adult mice. Deletion of PTEN in the dorsal root ganglia (DRG) is achieved in adult Drg11-CreER: PTENflox/flox (PTEN CKO) mice with oral administration of tamoxifen, and CKO mice develop pathological itch and elevated itch responses on exposure to various pruritogens. PTEN deletion leads to ectopic expression of TRPV1 and MrgprA3 in IB4+ non-peptidergic DRG neurons, and the TRPV1 is responsive to capsaicin. Importantly, the elevated itch responses are no longer present in Drg11-CreER: PTENflox/flox: TRPV1flox/flox (PTEN: TRPV1 dCKO) mice. In addition, thermal stimulation is enhanced in PTEN CKO mice but blunted in dCKO mice. PTEN-involved regulation of itch-related gene expression in DRG neurons provides insights for understanding molecular mechanism of itch and thermal sensation at the spinal level.


Assuntos
Prurido , Canais de Cátion TRPV , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Prurido/patologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(33): 11981-6, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18695238

RESUMO

Central serotonin (5-HT) dysregulation contributes to the susceptibility for mental disorders, including depression, anxiety, and posttraumatic stress disorder, and learning and memory deficits. We report that the formation of hippocampus-dependent spatial memory is compromised, but the acquisition and retrieval of contextual fear memory are enhanced, in central 5-HT-deficient mice. Genetic deletion of serotonin in the brain was achieved by inactivating Lmx1b selectively in the raphe nuclei of the brainstem, resulting in a near-complete loss of 5-HT throughout the brain. These 5-HT-deficient mice exhibited no gross abnormality in brain structures and had normal locomotor activity. Spatial learning in the Morris water maze was unaffected, but the retrieval of spatial memory was impaired. In contrast, contextual fear learning and memory induced by foot-shock conditioning was markedly enhanced, but this enhancement could be prevented by intracerebroventricular administration of 5-HT. Foot shock impaired long-term potentiation and facilitated long-term depression in hippocampal slices in WT mice but had no effect in 5-HT-deficient mice. Furthermore, bath application of 5-HT in 5-HT-deficient mice restored foot shock-induced alterations of hippocampal synaptic plasticity. Thus, central 5-HT regulates hippocampus-dependent contextual fear memory, and 5-HT modulation of hippocampal synaptic plasticity may be the underlying mechanism. The enhanced fear memory in 5-HT-deficient mice supports the notion that 5-HT deficiency confers susceptibility to posttraumatic stress disorder in humans.


Assuntos
Medo/fisiologia , Memória/fisiologia , Serotonina/deficiência , Animais , Encéfalo/metabolismo , Eletrofisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM , Camundongos , Camundongos Knockout , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Front Chem ; 9: 690520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095090

RESUMO

Perfluorooctanoic acid (PFOA), a typical perfluorinated carboxylic acid, is an emerging type of permanent organic pollutants that are regulated by the Stockholm Convention. The degradation of PFOA, however, is quite challenging largely due to the ultra-high stability of C-F bonds. Compared with other techniques, photocatalytic degradation offers the potential advantages of simple operation under mild conditions as well as exceptional decomposition and defluorination efficiency. Titanium dioxide (TiO2) is one of the most frequently used photocatalysts, but so far, the pristine nanosized TiO2 (e.g., the commercial P25) has been considered inefficient for PFOA degradation, since the photo-generated hydroxyl radicals from TiO2 are not able to directly attack C-F bonds. Mesoporous Sb2O3/TiO2 heterojunctions were therefore rationally designed in this work, of which the confined Sb2O3 nanoparticles in mesoporous TiO2 framework could not only tune the band structure and also increase the number of active sites for PFOA degradation. It was found that, after loading Sb2O3, the absorption of UV light was enhanced, indicating a higher efficiency of light utilization; while the band gap was reduced, which accelerated the separation of photo-generated charge carriers; and most importantly, the valence band edge of the Sb2O3/TiO2 heterojunction was significantly lifted so as to prevent the occurrence of hydroxyl radical pathway. Under the optimal ratio of Sb2O3-TiO2, the resulting catalysts managed to remove 81.7% PFOA in 2 h, with a degradation kinetics 4.2 times faster than the commercial P25. Scavenger tests and electron spin resonance spectra further revealed that such improvement was mainly attributed to the formation of superoxide radicals and photo-generated holes, in which the former drove the decarboxylation from C7F15COOH-C7F15 •, and the latter promoted the direct electron transfer for the conversion of C7F15COO--C7F15COO•. The Sb2O3/TiO2 photocatalysts were highly recyclable, with nearly 90% of the initial activity being retained after five consecutive cycles, guaranteeing the feasibility of long-term operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA