Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770495

RESUMO

Based on the principle of underwater transducers, an ultrasonic four-laminated transducer with a frequency of 1 MHz was proposed to solve the problem of large energy attenuation when ultrasonic waves propagate in viscoelastic media. First, this study targeted solid rocket propellant as the research object, and the energy attenuation characteristics of ultrasonic waves propagating in viscoelastic media were analyzed through the derivation of the wave equation. Second, the structure of a four-laminated transducer with a frequency of 1 MHz was designed, and the resonance frequency was obtained by a graphical method. The sound field simulation and experimental results showed that the gain of the four-laminated transducer was 15 dB higher than that of the single-wafer transducer. An ultrasonic feature scanning system was built to complete the qualitative and quantitative detection of the smallest artificial hole (ϕ2 mm × 10 mm). Finally, two different natural defects were scanned, and the results were compared with those obtained using an industrial computed tomography detection system. The results showed that the ultrasonic method was more accurate in characterizing two natural defects. The primary cause was that the industrial CT was not sensitive to defects parallel to the incident direction of the ray. Therefore, this study not only achieved the qualitative and quantitative nondestructive testing of solid rocket propellants, but also provides an important reference for other viscoelastic components.


Assuntos
Transdutores , Ultrassom , Simulação por Computador , Som , Vibração
2.
J Med Internet Res ; 21(4): e12437, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30938684

RESUMO

BACKGROUND: Stroke is one of the most common diseases that cause mortality. Detecting the risk of stroke for individuals is critical yet challenging because of a large number of risk factors for stroke. OBJECTIVE: This study aimed to address the limitation of ineffective feature selection in existing research on stroke risk detection. We have proposed a new feature selection method called weighting- and ranking-based hybrid feature selection (WRHFS) to select important risk factors for detecting ischemic stroke. METHODS: WRHFS integrates the strengths of various filter algorithms by following the principle of a wrapper approach. We employed a variety of filter-based feature selection models as the candidate set, including standard deviation, Pearson correlation coefficient, Fisher score, information gain, Relief algorithm, and chi-square test and used sensitivity, specificity, accuracy, and Youden index as performance metrics to evaluate the proposed method. RESULTS: This study chose 792 samples from the electronic records of 13,421 patients in a community hospital. Each sample included 28 features (24 blood test features and 4 demographic features). The results of evaluation showed that the proposed method selected 9 important features out of the original 28 features and significantly outperformed baseline methods. Their cumulative contribution was 0.51. The WRHFS method achieved a sensitivity of 82.7% (329/398), specificity of 80.4% (317/394), classification accuracy of 81.5% (645/792), and Youden index of 0.63 using only the top 9 features. We have also presented a chart for visualizing the risk of having ischemic strokes. CONCLUSIONS: This study has proposed, developed, and evaluated a new feature selection method for identifying the most important features for building effective and parsimonious models for stroke risk detection. The findings of this research provide several novel research contributions and practical implications.


Assuntos
Aprendizado de Máquina/normas , Acidente Vascular Cerebral/diagnóstico , Algoritmos , Humanos , Fatores de Risco
3.
Sensors (Basel) ; 17(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617326

RESUMO

By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.

4.
Sci Rep ; 14(1): 3979, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368477

RESUMO

For state estimation of multi-source asynchronous measurement systems with measurement missing phenomena, this paper proposes a distributed sequential inverse covariance intersection (DSICI) fusion algorithm based on conditional Kalman filtering method. It is mainly divided into synchronized state space module, local filtering module and fusion estimation module. The missing measurements occurring in the system are modelled and described by a set of random variables obeying a Bernoulli distribution. The synchronized state space module uses a state iteration method to synchronize the asynchronous measurement system at the moment of measurement update and it ensures the integrity of the measurement information. The local filtering module uses a conditional Kalman filtering algorithm for filter estimation. The reliability of the local filtering results is guaranteed because the local estimator designs a method to interact information with the domain sensors. The fusion estimation module designs a DSICI fusion algorithm with higher accuracy and satisfying consistency, which fuses the filtering results provided by each sensor when the relevant information between multiple sensors is unknown. Simulation examples demonstrate the excellent performance of the proposed algorithm, with a 33% improvement in accuracy over existing algorithms and an iteration time of less than 3 ms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA