Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioact Mater ; 39: 443-455, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38873087

RESUMO

The biomedical application of self-healing materials in wet or (under)water environments is quite challenging because the insulation and dissociation effects of water molecules significantly reduce the reconstruction of material-interface interactions. Rapid closure with uniform tension of high-tension wounds is often difficult, leading to further deterioration and scarring. Herein, a new type of thermosetting water-resistant self-healing bioelastomer (WRSHE) was designed by synergistically incorporating a stable polyglycerol sebacate (PGS) covalent crosslinking network and triple hybrid dynamic networks consisting of reversible disulfide metathesis (SS), and dimethylglyoxime urethane (Dou) and hydrogen bonds. And a resveratrol-loaded WRSHE (Res@WRSHE) was developed by a swelling, absorption, and crosslinked network locking strategy. WRSHEs exhibited skin-like mechanical properties in terms of nonlinear modulus behavior, biomimetic softness, high stretchability, and good elasticity, and they also achieved ultrafast and highly efficient self-healing in various liquid environments. For wound-healing applications of high-tension full-thickness skin defects, the convenient surface assembly by self-healing of WRSHEs provides uniform contraction stress to facilitate tight closure. Moreover, Res@WRSHEs gradually release resveratrol, which helps inflammatory response reduction, promotes blood vessel regeneration, and accelerates wound repair.

2.
Adv Mater ; 36(27): e2401009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548296

RESUMO

Tissue engineering and electrotherapy are two promising methods to promote tissue repair. However, their integration remains an underexplored area, because their requirements on devices are usually distinct. Triboelectric nanogenerators (TENGs) have shown great potential to develop self-powered devices. However, due to their susceptibility to moisture, TENGs have to be encapsulated in vivo. Therefore, existing TENGs cannot be employed as tissue engineering scaffolds, which require direct interaction with surrounding cells. Here, the concept of triboelectric scaffolds (TESs) is proposed. Poly(glycerol sebacate), a biodegradable and relatively hydrophobic elastomer, is selected as the matrix of TESs. Each hydrophobic micropore in multi-hierarchical porous TESs efficiently serves as a moisture-resistant working unit of TENGs. Integration of tons of micropores ensures the electrotherapy ability of TESs in vivo without encapsulation. Originally hydrophobic TESs are degraded by surface erosion and transformed into hydrophilic surfaces, facilitating their role as tissue engineering scaffolds. Notably, TESs seeded with chondrocytes obtain dense and large matured cartilages after subcutaneous implantation in nude mice. Importantly, rabbits with osteochondral defects receiving TES implantation show favorable hyaline cartilage regeneration and complete cartilage healing. This work provides a promising electronic biomedical device and will inspire a series of new in vivo applications.


Assuntos
Decanoatos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Porosidade , Coelhos , Engenharia Tecidual/métodos , Decanoatos/química , Polímeros/química , Camundongos , Glicerol/química , Glicerol/análogos & derivados , Cartilagem/fisiologia , Condrócitos/citologia , Camundongos Nus , Materiais Biocompatíveis/química
3.
Cell Rep ; 40(1): 111036, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793636

RESUMO

Recent developments in intersectional strategies have greatly advanced our ability to precisely target brain cell types based on unique co-expression patterns. To accelerate the application of intersectional genetics, we perform a brain-wide characterization of 13 Flp and tTA mouse driver lines and selected seven for further analysis based on expression of vesicular neurotransmitter transporters. Using selective Cre driver lines, we created more than 10 Cre/tTA combinational lines for cell type targeting and circuit analysis. We then used VGLUT-Cre/VGAT-Flp combinational lines to identify and map 30 brain regions containing neurons that co-express vesicular glutamate and gamma-aminobutyric acid (GABA) transporters, followed by tracing their projections with intersectional viral vectors. Focusing on the lateral habenula (LHb) as a target, we identified glutamatergic, GABAergic, or co-glutamatergic/GABAergic innervations from ∼40 brain regions. These data provide an important resource for the future application of intersectional strategies and expand our understanding of the neuronal subtypes in the brain.


Assuntos
Habenula , Neurônios , Animais , Habenula/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA