Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(43): e2301573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37365697

RESUMO

2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.

2.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507685

RESUMO

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

3.
Angew Chem Int Ed Engl ; 62(19): e202218546, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36853171

RESUMO

The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3 Bi2 I9 , Cs3 Sb2 I9 ) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.

4.
Nanotechnology ; 28(11): 115501, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28140339

RESUMO

We demonstrate a highly stretchable electronic skin (E-skin) based on the facile combination of microstructured graphene nanowalls (GNWs) and a polydimethylsiloxane (PDMS) substrate. The microstructure of the GNWs was endowed by conformally growing them on the unpolished silicon wafer without the aid of nanofabrication technology. Then a stamping transfer method was used to replicate the micropattern of the unpolished silicon wafer. Due to the large contact interface between the 3D graphene network and the PDMS, this type of E-skin worked under a stretching ratio of nearly 100%, and showed excellent mechanical strength and high sensitivity, with a change in relative resistance of up to 6500% and a gauge factor of 65.9 at 99.64% strain. Furthermore, the E-skin exhibited an obvious highly sensitive response to joint movement, eye movement and sound vibration, demonstrating broad potential applications in healthcare, body monitoring and wearable devices.

5.
Nanotechnology ; 28(31): 315501, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28604366

RESUMO

We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor's oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 µM to 10.0 mM) and a low detection limit (1.0 µM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

6.
Nat Commun ; 15(1): 3185, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609368

RESUMO

Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.

7.
Nat Commun ; 14(1): 4230, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454221

RESUMO

Bulk photovoltaic effect (BPVE), a second-order nonlinear optical effect governed by the quantum geometric properties of materials, offers a promising approach to overcome the Shockley-Quiesser limit of traditional photovoltaic effect and further improve the efficiency of energy harvesting. Here, we propose an effective platform, the nano edges embedded in assembled van der Waals (vdW) homo- or hetero-structures with strong symmetry breaking, low dimensionality and abundant species, for BPVE investigations. The BPVE-induced photocurrents strongly depend on the orientation of edge-embedded structures and polarization of incident light. Reversed photocurrent polarity can be observed at left and right edge-embedded structures. Our work not only visualizes the unique optoelectronic effect in vdW nano edges, but also provides an effective strategy for achieving BPVE in engineered vdW structures.

8.
ACS Nano ; 17(1): 530-538, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36547249

RESUMO

Hybrid systems have recently attracted increasing attention, which combine the special attributes of each constitute and create interesting functionalities through multiple heterointerface interactions. Here, we design a two-dimensional (2D) hybrid phototransistor utilizing Janus-interface engineering, in which the WSe2 channel combines light-sensitive perovskite and spontaneously polarized ferroelectrics, achieving collective ultrasensitive detection performance. The top perovskite (BA2(MA)3Pb4I13) layer can absorb the light efficiently and provide generous photoexcited holes to WSe2. WSe2 exhibit p-type semiconducting states of different degrees due to the selective light-operated doping effect, which also enables the ultrahigh photocurrent of the device. The bottom ferroelectric (Hf0.5Zr0.5O2) layer dramatically decreases the dark current, which should be attributed to the ferroelectric polarization assisted charge trapping effect and improved gate control. As a whole, our phototransistors show excellent photoelectric performances across the ultraviolet to near-infrared range (360-1050 nm), including an ultrahigh ON/OFF current ratio > 109 and low noise-equivalent power of 1.3 fW/Hz1/2, all of which are highly competitive in 2D semiconductor-based optoelectronic devices. In particular, the devices show excellent weak light detection ability, where the distinguishable photoswitching signal is obtained even under a record-low light intensity down to 1.6 nW/cm2, while showing a high responsivity of 2.3 × 105 A/W and a specific detectivity of 4.1 × 1014 Jones. Our work demonstrates that Janus-interface design makes the upper and lower interfaces complement each other for the joint advancement into high-performance optoelectronic applications, providing a picture to realize the integrated engineering on carrier dynamics by light irradiation, electric field, interfacial trapping, and band alignment.

9.
Natl Sci Rev ; 9(5): nwab129, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35591916

RESUMO

Ultrathin hybrid perovskites combine the advantages of 2D morphology and organic-inorganic components. This perspective article provides an updated summary and new insights for their development in flexible electronics and optoelectronics.

10.
Research (Wash D C) ; 2021: 9760729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38617378

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) have proven to be promising active layers for nonvolatile memories because of their rich abundance in earth, mobile ions, and adjustable dimensions. However, there is a lack of investigation on controllable fabrication and storage properties of one-dimensional (1D) OIHPs. Here, the growth of 1D (NH=CINH3)3PbI5 ((IFA)3PbI5) perovskite and related resistive memory properties are reported. The solution-processed 1D (IFA)3PbI5 crystals are of well-defined monoclinic crystal phase and needle-like shape with the length of about 6 mm. They exhibit a wide bandgap of 3 eV and a high decomposition temperature of 206°C. Moreover, the (IFA)3PbI5 films with good uniformity and crystallization were obtained using a dual solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). To study the intrinsic electric properties of this anisotropic material, we constructed the simplest memory cell composed of only Au/(IFA)3PbI5/ITO, contributing to a high-compacted device with a crossbar array device configuration. The resistive random access memory (ReRAM) devices exhibit bipolar current-voltage (I-V) hysteresis characteristics, showing a record-low power consumption of ~0.2 mW among all OIHP-based memristors. Moreover, our devices own the lowest power consumption and "set" voltage (0.2 V) among the simplest perovskite-based memory devices (inorganic ones are also included), which are no need to require double metal electrodes or any additional insulating layer. They also demonstrate repeatable resistance switching behaviour and excellent retention time. We envision that 1D OIHPs can enrich the low-dimensional hybrid perovskite library and bring new functions to low-power information devices in the fields of memory and other electronics applications.

11.
Nanoscale ; 12(20): 11242-11250, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32412578

RESUMO

Two-dimensional (2D) p-n junctions are basic components of various functional devices. However, the shortage of natural p-type 2D semiconductors makes it difficult to achieve both p-type and n-type transport in high-performance multifunctional devices. Here, continuous and uniform p-type Si2Te3 thin films are grown on SiO2/Si substrates, which are simultaneously used as an in situ Si source. Large-size 2D films with dimensions of ∼8 × 2 cm2 are prepared for the first time using a reliable and simple chemical vapor deposition (CVD) technique. Film growth occurs via the vapor-liquid-solid mechanism, allowing the film thickness to be controlled by the substrate temperature. As the Si2Te3 film thickness increases from 3 to 8 nm, the bandgap decreases from 2.07 to 1.65 eV. Moreover, the directly grown thin films possess high crystallinity, showing electronic properties that are comparable to those of MoTe2 crystals and MoS2 films. Therefore, this large-area growth of p-type Si2Te3 enriches the 2D semiconductor library and opens up a new platform for the study of p-type Si2Te3, which has potential for application in p-n junctions.

12.
Nanoscale ; 9(18): 6020-6025, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28443933

RESUMO

Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz-1/2 are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 1013 cm Hz1/2 W-1 and 2.27 × 1014 cm Hz1/2 W-1 based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 107, time response of 40 µs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W-1 are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.

13.
Adv Sci (Weinh) ; 3(11): 1600003, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27980983

RESUMO

Graphene and its derivatives hold a great promise for widespread applications such as field-effect transistors, photovoltaic devices, supercapacitors, and sensors due to excellent properties as well as its atomically thin, transparent, and flexible structure. In order to realize the practical applications, graphene needs to be synthesized in a low-cost, scalable, and controllable manner. Plasma-enhanced chemical vapor deposition (PECVD) is a low-temperature, controllable, and catalyst-free synthesis method suitable for graphene growth and has recently received more attentions. This review summarizes recent advances in the PECVD growth of graphene on different substrates, discusses the growth mechanism and its related applications. Furthermore, the challenges and future development in this field are also discussed.

14.
ACS Appl Mater Interfaces ; 8(26): 16869-75, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27269362

RESUMO

Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

15.
ACS Appl Mater Interfaces ; 7(36): 20179-83, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26308388

RESUMO

The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA