Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(9): 2357-2360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691718

RESUMO

We propose an optical dual-single-sideband (dual-SSB) modulated 16384-quadrature amplitude modulation (QAM) photonic vector millimeter-wave (mm-wave) signal generation scheme based on delta-sigma modulation (DSM). With the aid of the DSM, the severe nonlinear distortion of envelope detection for high-order QAM modulation signals in wireless communication can be effectively resolved. For the validation of our proposed scheme, we experimentally demonstrate the generation of a 40 GHz 16384-QAM orthogonal frequency division multiplexing (OFDM) photonic vector mm-wave signal and transmission over a 25-km standard single-mode fiber (SSMF), and a 1-m wireless link with the bit error ratio (BER) reaches the hard-decision forward-error-correction (HD-FEC) threshold of 3.8 × 10-3.

2.
Micromachines (Basel) ; 15(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675341

RESUMO

A 2 µm wavelength band spot size converter (SSC) based on a trident structure is proposed, which is coupled to a lensed fiber with a mode field diameter of 5 µm. The cross-section of the first segment of the tapered waveguide structure in the trident structure is designed as a right-angled trapezoidal shape, which can further improve the performance of the SSC. The coupling loss of the SSC is less than 0.9 dB in the wavelength range of 1.95~2.05 µm simulated by FDTD. According to the experimental results, the lowest coupling loss of the SSC is 1.425 dB/facet at 2 µm, which is close to the simulation result. The device is compatible with the CMOS process and can provide a good reference for the development of 2 µm wavelength band integrated photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA