RESUMO
OBJECTIVE: To test the effects of Guben Zenggu Decoction on bone metabolism and bone microstructure in ovariectomized rats for the purpose of preventing and treating postmenopausal osteoporosis. METHODS: Osteoporosis rat models were established by ovariectomy. The model rats were randomly divided into control, estradiol valerate treatment, and Guben Zenggu Decoction treatment groups with high, medium and low dosages. After 12 weeks of treatments, 10 rats from each group were randomly selected for cardiac blood sampling after abdominal anesthesia. The serum levels of estradiol (E2), osteocalcin (BGP), carboxyterminal of type â procollagen (PICP), collagen type â pyridine crosslinking peptide (ICTP) and acid tartaric acid phosphatase-5b (TRAP-5b) were determined by ELISA. Bone histomorphometric analysis was performed on the right femoral specimen of rats using micro-CT imaging. RESULTS: The models rats had lower levels of E2, bone alkaline phosphatase (BALP) and relative bone volume fraction (BV/TV), trabecular thickness (Tb.Th), number of trabeculae (Tb.N) and connectivity density (Conn.D), and higher levels of BGP, ICTP, PICP, TRAP-5b and degree of trabecular separation (Tb.Sp), structural model index (SMI) than their normal counterparts (P < 0.05). Estradiol valerate and Guben Zenggu Decoction treatments increased the levels of E2, BALP, BV/TV, Tb.Th, Tb.N, and Conn.D significantly (P < 0.05). Higher doses of Guben Zenggu Decoction resulted in higher changes (P < 0.05). CONCLUSION: Guben Zenggu Decoction can improve bone metabolism and bone micro-structure in ovariectomized rats, thus playing a preventive and therapeutic role in postmenopausal osteoporosis.
Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/tratamento farmacológico , Animais , Osso e Ossos/efeitos dos fármacos , Feminino , Ovariectomia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-XRESUMO
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.
Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Dor do Câncer/patologia , Proteínas Hedgehog/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Animais , Cálcio/metabolismo , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Espaço Intracelular/metabolismo , Transplante de Neoplasias , Nociceptividade , Ratos Sprague-Dawley , Medula Espinal/patologia , Regulação para CimaRESUMO
BACKGROUND: Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM: To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS: The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS: The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION: Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.
RESUMO
Aim: We explored the molecular pathway and material basis of GuBen-ZengGu granules (GBZGG) in treating osteoporosis using network pharmacology and animal experiments. Methods: The effective active components and potential targets of GBZGG were obtained from the TCMSP database and BATMAN-TCM database. Disease-related genes were obtained from GeneCard, NCBI, and DisGeNET. Next, a protein interaction network was established using the STRING database, and core genes were screened using the MCODE module. Cytoscape 3.8.0 was used to construct the network of component-disease-pathway-target, and KEGG pathway enrichment analyses were performed using the clusterProfiler R package to predict the mechanism of GBZGG in treating osteoporosis. An osteoporosis rat model was established by ovarian excision (OVX), and the partial results of network pharmacology were experimentally verified. Results: Pharmacodynamic results showed that GBZGG increased bone mineral density (BMD) and significantly improved the indexes of femur microstructure in model rats. The network pharmacology results showed that quercetin, luteolin, stigmasterol, angelicin, kaempferol, bakuchiol, bakuchiol, 7-O-methylisomucronulatum, isorhamnetin, formononetin, and beta-sitosterol are the major components of GBZGG, with MAPK1, AKT1, JUN, HSP90AA1, RELA, MAPK14, ESR1, RXRA, FOS, MAPK8, NCOA1, MYC, and IL-6 as its core targets for treating osteoporosis. Biological effects could be exerted by regulating the signaling pathways of fluid shear stress and the signaling pathways of atherosclerosis, advanced glycation end products (AGE-RAGE) of diabetic complications, prostate cancer, interleukin (IL-17), tumor necrosis factor (TNF), hepatitis B, mitogen-activated protein kinase (MAPK), etc. The results of animal experiments showed that GBZGG could reduce the serum levels of IL-6 and TNF-α, increase the expression of bone morphogenetic protein-2 (BMP-2) and runt-related transcription factor 2 (RUNX2) protein, and inhibit the activity of extracellular-regulated protein kinases (ERK1/2) and phosphorylation ERK1/2 (p-ERK1/2) protein. Conclusion: GBZGG reduces the expression of ERK1/2 and p-ERK1/2 proteins and mRNAs through the inhibitory effects on IL-6 and TNF-α and negatively regulates the MAPK/ERK signaling pathway. The osteoporosis model showed that it effectively improved the loss of bone mass and destruction of bone microstructure in rats and maintained a positive balance for bone metabolism.
RESUMO
ATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death. Subsequently, our focus pivots towards the multifaceted interplay between ATP-induced cellular demise and pivotal cellular protagonists, such as bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts, accentuating their potential contributions to secondary osteoporosis phenotypes, encompassing diabetic osteoporosis, glucocorticoid-induced osteoporosis, and postmenopausal osteoporosis. Furthermore, we probe the captivating interplay between ATP-induced cellular demise and alternative modalities of cellular demise, encompassing apoptosis, autophagy, and necroptosis. Through an all-encompassing inquiry into the intricate nexus connecting ATP-induced cellular demise and osteoporosis, our primary goal is to deepen our comprehension of the underlying mechanisms propelling this malady and establish a theoretical bedrock to underpin the development of pioneering therapeutic strategies.
RESUMO
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
RESUMO
AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). METHODS: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. RESULTS: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity. CONCLUSIONS: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.
Assuntos
Fatores de Troca do Nucleotídeo Guanina , Hiperalgesia , Enteropatias , Proteína 3 Supressora da Sinalização de Citocinas , Dor Visceral , Animais , Doenças do Colo/genética , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Hormônio Liberador da Corticotropina/metabolismo , Dilatação Patológica/complicações , Dilatação Patológica/genética , Dilatação Patológica/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/metabolismo , Interleucina-6/metabolismo , Enteropatias/complicações , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Dor , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Doenças Retais/genética , Doenças Retais/metabolismo , Doenças Retais/patologia , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Dor Visceral/etiologia , Dor Visceral/genética , Dor Visceral/metabolismoRESUMO
BACKGROUND: Long-term morphine use is associated with serious side effects, such as morphine-induced hyperalgesia and analgesic tolerance. Previous investigations have documented the association between dopamine (DA) neurons in the ventral tegmental area (VTA) and pain. However, whether VTA DA neurons are implicated in morphine-induced hyperalgesia and analgesic tolerance remains elusive. METHODS: Initially, we observed behavioural effects of lidocaine administration into VTA or ablation of VTA DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance. Subsequently, c-Fos expression in nucleus accumbens (NAc) shell-projecting and medial prefrontal cortex (mPFC)-projecting VTA DA neurons after chronic morphine treatment was respectively investigated. Afterwards, the effects of chemogenetic manipulation of NAc shell-projecting or mPFC-projecting DA neurons on morphine-induced hyperalgesia and anti-nociceptive tolerance were observed. Additionally, effects of chemogenetic manipulation of VTA GABA neurons on c-Fos expression in VTA DA neurons were investigated. RESULTS: Lidocaine injection into VTA relieved established hyperalgesia and anti-nociceptive tolerance whereas ablation of VTA DA neurons prevented the development of morphine-induced hyperalgesia and anti-nociceptive tolerance. Chronic morphine treatment increased c-Fos expression in NAc shell-projecting DA neurons, rather than in mPFC-projecting DA neurons. Chemogenetic manipulation of NAc shell-projecting DA neurons had influence on morphine-induced hyperalgesia and tolerance. However, chemogenetic manipulation of mPFC-projecting DA neurons had no significant effects on morphine-induced hyperalgesia and anti-nociceptive tolerance. Chemogenetic manipulation of VTA GABA neurons affected the c-Fos expression in VTA DA neurons. CONCLUSIONS: These findings revealed the involvement of NAc shell-projecting VTA DA neurons in morphine-induced hyperalgesia and anti-nociceptive tolerance, and may shed new light on the clinical management of morphine-induced hyperalgesia and analgesic tolerance. PERSPECTIVE: This study demonstrated that NAc shell-projecting DA neurons rather than mPFC-projecting DA neurons in the VTA were implicated in morphine-induced hyperalgesia and anti-nociceptive tolerance. Our findings may pave the way for the discovery of novel therapies for morphine-induced hyperalgesia and analgesic tolerance.
Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Tolerância a Medicamentos , Hiperalgesia/induzido quimicamente , Morfina/toxicidade , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Analgésicos Opioides/toxicidade , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Morfina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismoRESUMO
Visceral hypersensitivity as a common clinical manifestation of irritable bowel syndrome (IBS) may contribute to the development of chronic visceral pain. Our prior studies authenticated that the activation of the corticotropin-releasing factor (CRF) neurons in paraventricular nucleus (PVN) contributed to visceral hypersensitivity in mice, but puzzles still remain with respect to the underlying hyperactivation of corticotropin-releasing factor neurons. Herein, we employed maternal separation (MS) to establish mouse model of visceral hypersensitivity. The neuronal circuits associated with nociceptive hypersensitivity involved paraventricular nucleus CRF neurons by means of techniques such as behavioral test, pharmacology, molecular biology, retrograde neuronal circuit tracers, electrophysiology, chemogenetics and optogenetics. MS could predispose the elevated firing frequency of CRF neurons in PVN in murine adulthood, which could be annulled via the injection of exogenous GABA (0.3mM, 0.2µl) into PVN. The PVN-projecting GABAergic neurons were mainly distributed in the anterior ventral (AV) region in the bed nucleus of stria terminalis (BNST), wherein the excitability of these GABAergic neurons was reduced. Casp3 virus was utilized to induce apoptosis of GABA neurons in BNST-AV region, resulting in the activation of CRF neurons in PVN and visceral hyperalgesia. In parallel, chemogenetic and optogenetic approaches to activate GABAergic BNSTAV-PVN circuit in MS mice abated the spontaneous firing frequency of PVN CRF neurons and prevented the development of visceral hypersensitivity. A priori, PVNCRF-projecting GABAergic neurons in BNST-AV region participated in the occurrence of visceral hypersensitivity induced by MS. Our research may provide a new insight into the neural circuit mechanism of chronic visceral pain.
RESUMO
Cardiac fibrosis is involved in adverse cardiac remodeling and heart failure, which is the leading cause of deteriorated cardiac function. Accumulative evidence has elucidated that microRNAs (miRNAs) play important roles in the pathogenesis of cardiac fibrosis. However, the exact molecular mechanism underlying miR-144 in cardiac fibrosis remains unknown. In the present study, a transverse aortic constriction (TAC) mouse model and angiotensin II (Ang II)-induced cardiac fibroblasts (CFs) were constructed in order to investigate the expression levels of miR-144. It was demonstrated that miR-144 was significantly downregulated following pathological stimuli. CFs infected with miR-144 mimics were then used to test the effect of miR-144 on CF activation in vitro. The results revealed that overexpression of miR-144 led to a dramatically decreased proliferation and migration ability in CFs, as well as the transformation from fibroblasts to myofibroblasts, which was characterized by the decreased expression of collagen-I, collagen-III, CTGF, fibronectin and α-SMA. By contrast, such effects could be reversed by miR-144 knockdown. Mechanistically, the bioinformatics analysis and luciferase reporter assay in the present study demonstrated that cAMP response element-binding protein (CREB) was a direct target of miR-144, and the expression of CREB was attenuated by miR-144. The results of the present study demonstrated that miR-144 played a key role in CF activation, partially by targeting CREB, which further suggested that the overexpression of miR-144 may be a promising strategy for the treatment of cardiac fibrosis.
RESUMO
Ample evidence suggests that early life stress (ELS) is a high-risk factor for the development of visceral pain disorders, whereas the mechanism underlying neuronal circuit remains elusive. Herein, we employed neonatal colorectal distension (CRD) to induce visceral hypersensitivity in rats. A combination of electrophysiology, pharmacology, behavioral test, molecular biology, chemogenetics and optogenetics confirmed that CRD in neonatal rats could predispose the elevated firing frequency of the parvocellular corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of hypothalamus (PVN) in adulthood, with the CRH neurons activated and the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) diminished, both contributing to chronic visceral hypersensitivity. Moreover, following administration of exogenous GABA (300â¯mM/0.5⯵L) and GABAA receptor agonist muscimol (3â¯mM/0.5⯵L) in PVN, visceral hyperalgesia was abrogated. In addition, the PVN-projecting GABAergic neurons were mainly distributed in the anterior ventral (AV) region in the bed nucleus of stria terminalis (BNST), and the excitability of these GABAergic neurons was weakened in visceral hypersensitivity. Specific depletion of the GABAergic neurons in AV region precipitated visceral hyperalgesia. Moreover, chemogenetic activation of the PVN-projecting neurons alleviated the visceral hypersensitivity. Photoactivation of PVN-projecting GABAergic neurons abated the visceral hypersensitivity in neonatal-CRD rats, whereas photoinhibition evoked visceral hyperalgesia in naïve rats. Our findings demonstrated that disinhibition of the PVN-projecting GABAergic neurons in AV region contributed to the excitation of CRH neurons, thereby mediating visceral hypersensitivity. Our study might provide a novel insight into the neuronal circuits involved in the ELS-induced visceral hypersensitivity.
Assuntos
Neurônios GABAérgicos/fisiologia , Hiperalgesia/fisiopatologia , Inibição Neural/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Núcleos Septais/fisiopatologia , Dor Visceral/fisiopatologia , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Estresse Psicológico/fisiopatologiaRESUMO
PURPOSE: Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. METHODS: Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. RESULTS: Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. CONCLUSION: These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance.
RESUMO
BACKGROUND: Birch pollen sensitization and associated pollen-food syndrome among Chinese allergic patients have not been investigated. METHODS: Sera from 203 allergic patients from the northern part of China and collected during February to July 2014 were investigated. Specific immunoglobulin E (IgE) against birch pollen extract Bet v and major birch pollen allergen Bet v 1 were measured using the ADVIA Centaur. The presence of major apple allergen Mal d 1 and soy bean allergen Gly m 4 specific IgE was measured by ImmunoCAP 100. RESULTS: Among the 203 sera, 34 sera (16.7%) had specific IgE to Bet v and of these, 28 sera (82.4%) contained Bet v 1-specific IgE. Among the 28 sera with Bet v 1-specific IgE, 27 sera (96.4%) contained Mal d 1-specific IgE and 22 sera (78.6%) contained Gly m 4-specific IgE. Of the 34 Bet v-positive sera, 6 sera (17.6%) contained no specific IgE for Bet v 1, Mal d 1, or Gly m 4. Almost all Bet v-positive sera were donated during the birch pollen season. CONCLUSIONS: The prevalence of birch allergy among patients visiting health care during pollen season can be as high as 16.7% in Tangshan City. The majority of Chinese birch allergic patients are IgE-sensitized to the major birch pollen allergen Bet v 1 as well as to the major apple allergen Mal d 1 and soy bean allergen Gly m 4. A relatively high number of patients (17.6%) are IgE-sensitized to birch pollen allergen(s) other than Bet v 1. The high prevalence of specific IgE to Mal d 1 and Gly m 4 among Bet v 1-sensitized patients indicates that pollen-food allergy syndrome could be of clinical relevance in China.
Assuntos
Alérgenos/química , Hipersensibilidade Alimentar/imunologia , Glycine max/química , Imunoglobulina E/química , Malus/química , Pólen/química , Adolescente , Adulto , Idoso , Antígenos de Plantas/química , Betula , Criança , Pré-Escolar , China , Humanos , Pessoa de Meia-Idade , Proteínas de Plantas/química , Rinite Alérgica Sazonal/imunologia , Adulto JovemRESUMO
OBJECTIVE: Weed pollens are common sources of allergens worldwide. The prevalence of weed pollen sensitization is not yet fully known in China. The purpose of this study was to investigate the prevalence of sensitization to weed allergens from Artemisia, Ambrosia, and Humulus in northern China. METHODS: A total of 1144 subjects (aged from 5 to 68 years) visiting our clinic from June to October 2011 underwent intradermal testing using a panel of 25 allergen sources. Subjects with positive skin responses to any pollen were further tested for their serum concentrations of IgE antibodies against Artemisia vulgaris, Ambrosia artemisiifolia, and Humulus scandens, and against the purified allergens, Art v 1 and Amb a 1. RESULTS: Of 1144 subjects, 170 had positive intradermal reactions to pollen and 144 donated serum for IgE testing. The prevalence of positive intradermal responses to pollens of Artemisia sieversiana, Artemisia annua, A. artemisiifolia, and H. scandens was 11.0%, 10.2%, 3.7%, and 6.6%, respectively. Among the intradermal positive subjects, the prevalence of specific IgE antigens to A. vulgaris was 58.3%, to A. artemisiifolia 14.7%, and to H. scandens 41.0%. The prevalence of specific IgE antigens to the allergen Art v 1 was 46.9%, and to Amb a 1 was 11.2%. The correlation between the presence of IgE antibodies specific to A. vulgaris and to the Art v 1 antigen was very high. Subjects with A. artemisiifolia specific IgE also had A. vulgaris specific IgE, but with relatively high levels of A. vulgaris IgE antibodies. There were no correlations between the presence of IgE antibodies to H. scandens and A. vulgaris or to H. scandens and A. artemisiifolia. CONCLUSIONS: The intradermal prevalence of weed pollen sensitization among allergic subjects in northern China is about 13.5%. Correlations of specific IgE antibodies suggest that pollen allergens from Artemisia and Humulus are independent sources for primary sensitization.