Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 230(2): 821-831, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454991

RESUMO

Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. Here, we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.


Assuntos
Ericales , Magnoliopsida , Biodiversidade , Flores , Filogenia , Clima Tropical
2.
Nat Commun ; 8: 16047, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763051

RESUMO

Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms.


Assuntos
Flores/anatomia & histologia , Magnoliopsida/anatomia & histologia , Evolução Biológica , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA