Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Circulation ; 147(2): 142-153, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36382596

RESUMO

BACKGROUND: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.


Assuntos
Miócitos Cardíacos , Troponina I , Camundongos , Animais , Troponina I/metabolismo , Camundongos Endogâmicos DBA , Miócitos Cardíacos/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Mol Cell Cardiol ; 182: 86-91, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517369

RESUMO

Although the myocardial renewal rate in the adult mammalian heart is quite low, recent studies have identified genetic variants which can impact the degree of cardiomyocyte cell cycle reentry. Here we use the compound interest law to model the level of regenerative growth over time in mice exhibiting different rates of cardiomyocyte cell cycle reentry following myocardial injury. The modeling suggests that the limited ability of S-phase adult cardiomyocytes to progress through cytokinesis, rather than the ability to reenter the cell cycle per se, is a major contributor to the low levels of intrinsic regenerative growth in the adult myocardium.


Assuntos
Traumatismos Cardíacos , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Coração , Ciclo Celular , Traumatismos Cardíacos/metabolismo , Citocinese , Proliferação de Células , Mamíferos
4.
Biochim Biophys Acta ; 1833(4): 799-803, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23142641

RESUMO

Interventions to effect therapeutic cardiomyocyte renewal have received considerable interest of late. Such interventions, if successful, could give rise to myocardial regeneration in diseased hearts. Regenerative interventions fall into two broad categories, namely approaches based on promoting renewal of pre-existing cardiomyocytes and approaches based on cardiomyogenic stem cell activity. The latter category can be further subdivided into approaches promoting differentiation of endogenous cardiomyogenic stem cells, approaches wherein cardiomyogenic stem cells are harvested, amplified or enriched ex vivo, and subsequently engrafted into the heart, and approaches wherein an exogenous stem cell is induced to differentiate in vitro, and the resulting cardiomyocytes are engrafted into the heart. There is disagreement in the literature regarding the degree to which cardiomyocyte renewal occurs in the normal and injured heart, the mechanism(s) by which this occurs, and the degree to which therapeutic interventions can enhance regenerative growth. This review discusses several caveats which are encountered when attempting to measure cardiomyocyte renewal in vivo which likely contribute, at least in part, to the disagreement regarding the levels at which this occurs in normal, injured and treated hearts. This article is part of a Special Issue entitled: Cardiomyocyte biology: Cardiac pathways of differentiation, metabolism and contraction.


Assuntos
Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Bromodesoxiuridina , Diferenciação Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Proliferação de Células , Rastreamento de Células , Genes Reporter , Integrases , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Células-Tronco/metabolismo , beta-Galactosidase
6.
Nature ; 453(7194): 524-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18432194

RESUMO

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ativinas/farmacologia , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
7.
Eur Heart J ; 33(1): 129-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21849352

RESUMO

AIMS: Although pharmacological interventions that mobilize stem cells and enhance their homing to damaged tissue can limit adverse post-myocardial infarction (MI) remodelling, cardiomyocyte renewal with this approach is limited. While experimental cell cycle induction can promote cardiomyocyte renewal following MI, this process must compete with the more rapid processes of scar formation and adverse remodelling. The current study tested the hypothesis that the combination of enhanced stem cell mobilization/homing and cardiomyocyte cell cycle induction would result in increased myocardial renewal in injured hearts. METHODS AND RESULTS: Myocardial infarction was induced by coronary artery ligation in adult MHC-cycD2 transgenic mice (which exhibit constitutive cardiomyocyte cell cycle activity) and their non-transgenic littermates. Mice were then treated with saline or with granulocyte colony-stimulating factor (G-CSF) plus the dipeptidylpeptidase-IV (DPP-IV) inhibitor Diprotin A (DipA) for 7 days. Infarct thickness and cardiomyocyte number/infarct/section were significantly improved in MHC-cycD2 mice with G-CSF plus DipA treatment when compared with MHC-cycD2 transgene expression or G-CSF plus DipA treatment alone. Echocardiographic analyses revealed that stem cell mobilization/homing and cardiomyocyte cell cycle activation had an additive effect on functional recovery. CONCLUSION: These data strongly suggest that G-CSF plus DPP-IV inhibition, combined with cardiomyocyte cell cycle activation, leads to enhanced myocardial regeneration following MI. The data are also consistent with the notion that altering adverse post-injury remodelling renders the myocardium more permissive for cardiomyocyte repopulation.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Coração/fisiologia , Infarto do Miocárdio/fisiopatologia , Regeneração/fisiologia , Animais , Ciclina D2/metabolismo , Combinação de Medicamentos , Mobilização de Células-Tronco Hematopoéticas/métodos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Distribuição Aleatória , Volume Sistólico/fisiologia
8.
Pediatr Cardiol ; 33(6): 929-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22481568

RESUMO

Although the adult mammalian myocardium exhibits a limited ability to undergo regenerative growth, its intrinsic renewal rate is insufficient to compensate for myocyte loss during cardiac disease. Transplantation of donor cardiomyocytes or cardiomyogenic stem cells is considered a promising strategy for reconstitution of cardiac mass, provided the engrafted cells functionally integrate with host myocardium and actively contribute to its contractile force. The authors previously developed a two-photon fluorescence microscopy-based assay that allows in situ screening of donor cell function after intracardiac delivery of the cells. This report reviews the techniques of two-photon fluorescence microscopy and summarizes its application for quantifying the extent to which a variety of donor cell types stably and functionally couple with the recipient myocardium.


Assuntos
Cálcio/metabolismo , Microscopia de Fluorescência/métodos , Miocárdio/citologia , Miócitos Cardíacos/transplante , Animais , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transplantes
9.
Am J Physiol Cell Physiol ; 298(6): C1603-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20457832

RESUMO

Accurate nuclear identification is crucial for distinguishing the role of cardiac myocytes in intrinsic and experimentally induced regenerative growth of the myocardium. Conventional histologic analysis of myocyte nuclei relies on the optical sectioning capabilities of confocal microscopy in conjunction with immunofluorescent labeling of cytoplasmic proteins such as troponin T, and dyes that bind to double-strand DNA to identify nuclei. Using heart sections from transgenic mice in which the cardiomyocyte-restricted alpha-cardiac myosin heavy chain promoter targeted the expression of nuclear localized beta-galactosidase reporter in >99% of myocytes, we systematically compared the fidelity of conventional myocyte nuclear identification using confocal microscopy, with and without the aid of a membrane marker. The values obtained with these assays were then compared with those obtained with anti-beta-galactosidase immune reactivity in the same samples. In addition, we also studied the accuracy of anti-GATA4 immunoreactivity for myocyte nuclear identification. Our results demonstrate that, although these strategies are capable of identifying myocyte nuclei, the level of interobserver agreement and margin of error can compromise accurate identification of rare events, such as cardiomyocyte apoptosis and proliferation. Thus these data indicate that morphometric approaches based on segmentation are justified only if the margin of error for measuring the event in question has been predetermined and deemed to be small and uniform. We also illustrate the value of a transgene-based approach to overcome these intrinsic limitations of identifying myocyte nuclei. This latter approach should prove quite useful when measuring rare events.


Assuntos
Núcleo Celular/metabolismo , Imuno-Histoquímica , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Coloração e Rotulagem/métodos , Animais , Biomarcadores/metabolismo , Miosinas Cardíacas/genética , Proliferação de Células , Fator de Transcrição GATA4/metabolismo , Genes Reporter , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Cadeias Pesadas de Miosina/genética , Variações Dependentes do Observador , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Troponina T/metabolismo , Aglutininas do Germe de Trigo , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
10.
Circulation ; 119(1): 99-106, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19103993

RESUMO

BACKGROUND: Doxorubicin is used to treat childhood and adult cancer. Doxorubicin treatment is associated with both acute and chronic cardiotoxicity. The cardiotoxic effects of doxorubicin are cumulative, which limits its chemotherapeutic dose. Free radical generation and p53-dependent apoptosis are thought to contribute to doxorubicin-induced cardiotoxicity. METHODS AND RESULTS: Adult transgenic (MHC-CB7) mice expressing cardiomyocyte-restricted dominant-interfering p53 and their nontransgenic littermates were treated with doxorubicin (20 mg/kg cumulative dose). Nontransgenic mice exhibited reduced left ventricular systolic function (predoxorubicin fractional shortening [FS] 61+/-2%, postdoxorubicin FS 45+/-2%, mean+/-SEM, P<0.008), reduced cardiac mass, and high levels of cardiomyocyte apoptosis 7 days after the initiation of doxorubicin treatment. In contrast, doxorubicin-treated MHC-CB7 mice exhibited normal left ventricular systolic function (predoxorubicin FS 63+/-2%, postdoxorubicin FS 60+/-2%, P>0.008), normal cardiac mass, and low levels of cardiomyocyte apoptosis. Western blot analyses indicated that mTOR (mammalian target of rapamycin) signaling was inhibited in doxorubicin-treated nontransgenic mice but not in doxorubicin-treated MHC-CB7 mice. Accordingly, transgenic mice with cardiomyocyte-restricted, constitutively active mTOR expression (MHC-mTORca) were studied. Left ventricular systolic function (predoxorubicin FS 64+/-2%, postdoxorubicin FS 60+/-3%, P>0.008) and cardiac mass were normal in doxorubicin-treated MHC-mTORca mice, despite levels of cardiomyocyte apoptosis similar to those seen in doxorubicin-treated nontransgenic mice. CONCLUSIONS: These data suggest that doxorubicin treatment induces acute cardiac dysfunction and reduces cardiac mass via p53-dependent inhibition of mTOR signaling and that loss of myocardial mass, and not cardiomyocyte apoptosis, is the major contributor to acute doxorubicin cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Proteínas de Transporte/metabolismo , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Doença Aguda , Animais , Apoptose , Proteínas de Transporte/genética , Cardiopatias/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/genética
11.
Nature ; 428(6983): 664-8, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15034593

RESUMO

The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.


Assuntos
Diferenciação Celular , Linhagem da Célula , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Animais , Contagem de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Técnicas de Cocultura , Feminino , Genes Reporter/genética , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Especificidade de Órgãos , Regeneração , Transgenes/genética
12.
Mol Ther ; 16(6): 1129-37, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18431364

RESUMO

The cardiomyogenic potential of adult bone marrow (BM) cells after being directly transplanted into the ischemically injured heart remains a controversial issue. In this study, we investigated the ability of transplanted BM cells to develop intracellular calcium ([Ca(2+)](i)) transients in response to membrane depolarization in situ. Low-density mononuclear (LDM) BM cells, c-kit-enriched (c-kit(enr)) BM cells, and highly enriched lin(-) c-kit(+) BM cells were obtained from adult transgenic mice ubiquitously expressing enhanced green fluorescent protein (EGFP), and injected into peri-infarct myocardiums of nontransgenic mice. After 9-10 days the mice were killed, and the hearts were removed, perfused in Langendorff mode, loaded with the calcium-sensitive fluorophore rhod-2, and subjected to two-photon laser scanning fluorescence microscopy (TPLSM) to monitor action potential-induced [Ca(2+)](i) transients in EGFP-expressing donor-derived cells and non-expressing host cardiomyocytes. Whereas spontaneous and electrically evoked [Ca(2+)](i) transients were found to occur synchronously in host cardiomyocytes along the graft-host border and in areas remote from the infarct, they were absent in all of the >3,000 imaged BM-derived cells that were located in clusters throughout the infarct scar or peri-infarct zone. We conclude that engrafted BM-derived cells lack attributes of functioning cardiomyocytes, calling into question the concept that adult BM cells can give rise to substantive cardiomyocyte regeneration within the infarcted heart.


Assuntos
Células da Medula Óssea/citologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Animais , Antígenos CD34/biossíntese , Cálcio/metabolismo , Linhagem da Célula , Transplante de Células , Galinhas , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Modelos Biológicos
13.
Cardiovasc Res ; 78(1): 18-25, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18079102

RESUMO

AIMS: Cardiomyocyte loss is a major contributor to the decreased cardiac function observed in diseased hearts. Previous studies have shown that cardiomyocyte-restricted cyclin D2 expression resulted in sustained cell cycle activity following myocardial injury in transgenic (MHC-cycD2) mice. Here, we investigated the effects of this cell cycle activation on cardiac function following myocardial infarction (MI). METHODS AND RESULTS: MI was induced in transgenic and non-transgenic mice by left coronary artery occlusion. At 7, 60, and 180 days after MI, left ventricular pressure-volume measurements were recorded and histological analysis was performed. MI had a similar adverse effect on cardiac function in transgenic and non-transgenic mice at 7 days post-injury. No improvement in cardiac function was observed in non-transgenic mice at 60 and 180 days post-MI. In contrast, the transgenic animals exhibited a progressive and marked increase in cardiac function at subsequent time points. Improved cardiac function in the transgenic mice at 60 and 180 days post-MI correlated positively with the presence of newly formed myocardial tissue which was not apparent at 7 days post-MI. Intracellular calcium transient imaging indicated that cardiomyocytes present in the newly formed myocardium participated in a functional syncytium with the remote myocardium. CONCLUSION: These findings indicate that cardiomyocyte cell cycle activation leads to improvement of cardiac function and morphology following MI and may represent an important clinical strategy to promote myocardial regeneration.


Assuntos
Ciclo Celular , Proliferação de Células , Ciclinas/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Animais , Sinalização do Cálcio , Ciclina D2 , Ciclinas/genética , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Regeneração , Fatores de Tempo , Miosinas Ventriculares/genética , Pressão Ventricular
14.
Cardiovasc Res ; 114(3): 389-400, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016731

RESUMO

AIMS: Recent studies have demonstrated electrotonic coupling between scar tissue and the surrounding myocardium in cryoinjured hearts. However, the electrical dynamics occurring at the myocyte-nonmyocyte interface in the fibrotic heart remain undefined. Here, we sought to develop an assay to interrogate the nonmyocyte cell type contributing to heterocellular coupling and to characterize, on a cellular scale, its voltage response in the infarct border zone of living hearts. METHODS AND RESULTS: We used two-photon laser scanning microscopy in conjunction with a voltage-sensitive dye to record transmembrane voltage changes simultaneously from cardiomyocytes and adjoined nonmyocytes in Langendorff-perfused mouse hearts with healing myocardial infarction. Transgenic mice with cardiomyocyte-restricted expression of a green fluorescent reporter protein underwent permanent coronary artery ligation and their hearts were subjected to voltage imaging 7-10 days later. Reporter-negative cells, i.e. nonmyocytes, in the infarct border zone exhibited depolarizing transients at a 1:1 coupling ratio with action potentials recorded simultaneously from adjacent, reporter-positive ventricular myocytes. The electrotonic responses in the nonmyocytes exhibited slower rates of de- and repolarization compared to the action potential waveform of juxtaposed myocytes. Voltage imaging in infarcted hearts expressing a fluorescent reporter specifically in myofibroblasts revealed that the latter were electrically coupled to border zone myocytes. Their voltage transient properties were indistinguishable from those of nonmyocytes in hearts with cardiomyocyte-restricted reporter expression. The density of connexin43 expression at myofibroblast-cardiomyocyte junctions was ∼5% of that in the intercalated disc regions of paired ventricular myocytes in the remote, uninjured myocardium, whereas the ratio of connexin45 to connexin43 expression levels at heterocellular contacts was ∼1%. CONCLUSION: Myofibroblasts contribute to the population of electrically coupled nonmyocytes in the infarct border zone. The slower kinetics of myofibroblast voltage responses may reflect low electrical conductivity across heterocellular junctions, in accordance with the paucity of connexin expression at myofibroblast-cardiomyocyte contacts.


Assuntos
Potenciais de Ação , Comunicação Celular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Animais , Conexina 43/metabolismo , Conexinas/metabolismo , Modelos Animais de Doenças , Condutividade Elétrica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Preparação de Coração Isolado , Cinética , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Miofibroblastos/patologia
15.
Dev Cell ; 44(4): 433-446.e7, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29486195

RESUMO

Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.


Assuntos
Animais Geneticamente Modificados/fisiologia , Coração/embriologia , Infarto do Miocárdio/patologia , Miocárdio/citologia , Poliploidia , Regeneração/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/embriologia , Proliferação de Células , Células Cultivadas , Coração/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
J Clin Invest ; 114(6): 775-83, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15372101

RESUMO

Skeletal myoblast transplantation is a potential treatment for congestive heart failure. To study the functional activity of both donor and host myocytes following transplantation, skeletal myoblasts expressing an enhanced green fluorescent protein (EGFP) transgene were transplanted into hearts of nontransgenic recipients, and changes in intracellular calcium concentration ([Ca2+]i) were monitored in donor and host cells. While the vast majority of donor-derived myocytes were observed to be functionally isolated from the host myocardium, a small population of donor myocytes exhibited action potential-induced calcium transients in synchrony with adjacent host cardiomyocytes. In many cases, the durations of these [Ca2+]i transients were heterogeneous compared with those in neighboring host cardiomyocytes. In other studies, EGFP-expressing donor myoblasts were transplanted into the hearts of adult transgenic recipient mice expressing a cardiomyocyte-restricted beta-gal reporter gene. A small population of myocytes was observed to express both reporter transgenes, indicating that the transplanted myoblasts fused with host cardiomyocytes at a very low frequency. These cells also expressed connexin43, a component of gap junctions. Thus engraftment of skeletal myoblasts generated spatial heterogeneity of [Ca2+]i signaling at the myocardial/skeletal muscle interface, most likely as a consequence of fusion events between donor myoblasts and host cardiomyocytes.


Assuntos
Sinalização do Cálcio/fisiologia , Transplante de Células/métodos , Potenciais Evocados/fisiologia , Coração , Células Musculares/fisiologia , Células Musculares/transplante , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Genes Reporter , Coração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/citologia
17.
Circ Res ; 96(1): 110-8, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15576649

RESUMO

Restriction point transit and commitment to a new round of cell division is regulated by the activity of cyclin-dependent kinase 4 and its obligate activating partners, the D-type cyclins. In this study, we examined the ability of D-type cyclins to promote cardiomyocyte cell cycle activity. Adult transgenic mice expressing cyclin D1, D2, or D3 under the regulation of the alpha cardiac myosin heavy chain promoter exhibited high rates of cardiomyocyte DNA synthesis under baseline conditions. Cardiac injury in mice expressing cyclin D1 or D3 resulted in cytoplasmic cyclin D accumulation, with a concomitant reduction in the level of cardiomyocyte DNA synthesis. In contrast, cardiac injury in mice expressing cyclin D2 did not alter subcellular cyclin localization. Consequently, cardiomyocyte cell cycle activity persisted in injured hearts expressing cyclin D2, ultimately resulting in infarct regression. These data suggested that modulation of D-type cyclins could be exploited to promote regenerative growth in injured hearts.


Assuntos
Ciclinas/fisiologia , Replicação do DNA , Terapia Genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Cardiomegalia/induzido quimicamente , Doença das Coronárias/complicações , Doença das Coronárias/metabolismo , Ciclina D1/genética , Ciclina D1/fisiologia , Ciclina D2 , Ciclina D3 , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/biossíntese , Ciclinas/genética , Eletrocoagulação/efeitos adversos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/terapia , Isoproterenol/toxicidade , Ligadura , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes de Fusão/fisiologia
18.
Circ Res ; 92(11): 1217-24, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12730096

RESUMO

Cellular transplantation has emerged as a potential approach to treat diseased hearts. Although cell transplantation can affect global heart function, it is not known if this results directly via functional integration of donor myocytes or indirectly via enhanced revascularization and/or altered postinjury remodeling. To determine the degree to which donor cardiomyocytes are able to functionally integrate with the host myocardium, fetal transgenic cardiomyocytes expressing enhanced green fluorescent protein were transplanted into the hearts of nontransgenic adult mice. Two-photon molecular excitation laser scanning microscopy was then used to simultaneously image cellular calcium transients in donor and host cells within the intact recipient hearts. Calcium transients in the donor cardiomyocytes were synchronous with and had kinetics indistinguishable from those of neighboring host cardiomyocytes. These results strongly suggest that donor cardiomyocytes functionally couple with host cardiomyocytes and support the notion that transplanted cardiomyocytes can form a functional syncytium with the host myocardium.


Assuntos
Comunicação Celular , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Animais , Cálcio/metabolismo , Potenciais Evocados , Proteínas de Fluorescência Verde , Átrios do Coração/citologia , Cinética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética
19.
Cardiovasc Res ; 58(2): 336-50, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12757868

RESUMO

Cellular transplantation is emerging as a potential mechanism with which to augment myocyte number in diseased hearts. To date a number of cell types have been shown to successfully engraft into the myocardium, including fetal, neonatal, and embryonic stem cell-derived cardiomyocytes, skeletal myoblasts, and stem cells with apparent cardiomyogenic potential. Here we provide a review of studies wherein myocytes or stem cells with myogenic potential have been transplanted into the heart. In addition, issues pertaining to the tracking and functional consequences of cell transplantation are discussed.


Assuntos
Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Linhagem da Célula , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/cirurgia , Microscopia de Fluorescência , Modelos Animais , Contração Miocárdica
20.
PLoS One ; 10(6): e0131511, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110646

RESUMO

Parthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for allogenic applications. In this study, PSCs isolated from transgenic mice carrying a cardiomyocyte-restricted reporter transgene to permit tracking of donor cells were genetically modified to carry a cardiomyocyte-restricted aminoglycoside phosphotransferase expression cassette (MHC-neor/pGK-hygror) to permit the generation of highly enriched cardiomyocyte cultures from spontaneously differentiating PSCs by simple selection with the neomycin analogue G148. Following engraftment into isogenic recipient hearts, the selected cardiomyocytes formed a functional syncytium with the host myocardium as evidenced by the presence of entrained intracellular calcium transients. These cells thus constitute a potential source of therapeutic donor cells.


Assuntos
Miócitos Cardíacos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Transplante de Células/métodos , Eletroporação , Feminino , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Canamicina Quinase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Miocárdio/metabolismo , Partenogênese , Reação em Cadeia da Polimerase , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA