Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 64: 53-64, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37450899

RESUMO

The association of an individual's genetic makeup with their response to drugs is referred to as pharmacogenomics. By understanding the relationship between genetic variants and drug efficacy or toxicity, we are able to optimize pharmacological therapy according to an individual's genotype. Pharmacogenomics research has historically suffered from bias and underrepresentation of people from certain ancestry groups and of the female sex. These biases can arise from factors such as drugs and indications studied, selection of study participants, and methods used to collect and analyze data. To examine the representation of biogeographical populations in pharmacogenomic data sets, we describe individuals involved in gene-drug response studies from PharmGKB, a leading repository of drug-gene annotations, and showcaseCYP2D6, a gene that metabolizes approximately 25% of all prescribed drugs. We also show how the historical underrepresentation of females in clinical trials has led to significantly more adverse drug reactions in females than in males.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sexismo , Masculino , Humanos , Feminino , Farmacogenética
2.
Ann Hum Genet ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488696

RESUMO

BACKGROUND: Dyslipidemia is becoming prevalent in Africa, where malaria is endemic. Observational studies have documented the long-term protective effect of malaria on dyslipidemia; however, these study designs are prone to confounding. Therefore, we used Mendelian randomization (MR, a method robust to confounders and reverse causation) to determine the causal effect of severe malaria (SM) and the recurrence of non-severe malaria (RNM) on lipid traits. METHOD: We performed two-sample MR using genome wide association study (GWAS) summary statistics for recurrent non-severe malaria (RNM) from a Benin cohort (N = 775) and severe malaria from the MalariaGEN dataset (N = 17,000) and lipid traits from summary-level data of a meta-analyzed African lipid GWAS (MALG, N = 24,215) from the African Partnership for Chronic Disease Research (APCDR) (N = 13,612) and the Africa Wits-IN-DEPTH partnership for genomics studies (AWI-Gen) dataset (N = 10,603). RESULT: No evidence of significant causal association was obtained between RNM and high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol and triglycerides. However, a notable association emerged between severe malarial anaemia (SMA) which is a subtype of severe malaria and reduced HDL-C levels, suggesting a potential subtype-specific effect. Nonetheless, we strongly believe that the small sample size likely affects our estimates, warranting cautious interpretation of these results. CONCLUSION: Our findings challenge the hypothesis of a broad causal relationship between malaria (both severe and recurrent non-severe forms) and dyslipidemia. The isolated association with SMA highlights an intriguing area for future research. However, we believe that conducting larger studies to investigate the connection between malaria and dyslipidemia in Africa will enhance our ability to better address the burden posed by both diseases.

4.
BMC Genomics ; 24(1): 496, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644460

RESUMO

Despite recent efforts to increase diversity in genome-wide association studies (GWASs), most loci currently associated with kidney function are still limited to European ancestry due to the underlying sample selection bias in available GWASs. We set out to identify susceptibility loci associated with estimated glomerular filtration rate (eGFRcrea) in 80027 individuals of African-ancestry from the UK Biobank (UKBB), Million Veteran Program (MVP), and Chronic Kidney Disease genetics (CKDGen) consortia.We identified 8 lead SNPs, 7 of which were previously associated with eGFR in other populations. We identified one novel variant, rs77408001 which is an intronic variant mapped to the ELN gene. We validated three previously reported loci at GATM-SPATA5L1, SLC15A5 and AGPAT3. Fine-mapping analysis identified variants rs77121243 and rs201602445 as having a 99.9% posterior probability of being causal. Our results warrant designing bigger studies within individuals of African ancestry to gain new insights into the pathogenesis of Chronic Kidney Disease (CKD), and identify genomic variants unique to this ancestry that may influence renal function and disease.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , População Negra/genética , Mutação , Insuficiência Renal Crônica/genética , Rim
5.
Microb Pathog ; 176: 105994, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682669

RESUMO

The development of clinically actionable pharmaceuticals against coronavirus disease (COVID-19); an infectious disease caused by the SARS-CoV-2 virus is very important for ending the pandemic. Coronavirus spike glycoprotein (GP)-Receptor Binding Domain (RBD) and its interaction with host receptor angiotensin converting enzyme 2 (ACE2) is one of the most structurally understood but therapeutically untapped aspect of COVID-19 pathogenesis. Binding interface based on previous x-ray structure of RBD/ACE2 were virtually screened to identify fragments with high-binding score from 12,000 chemical building blocks. The hit compound was subjected to fingerprint-based similarity search to identify compounds within the FDA-approved drug library containing the same core scaffold. Identified compounds were then re-docked into of RBD/ACE2. The best ranked compound was validated for RBD/ACE2 inhibition using commercial kit. Molecular dynamics simulation was conducted to provide further insight into the mechanism of inhibition. From the original 12000 chemical building blocks, benzimidazole (BAZ) scaffold was identified. Fingerprint-based similarity search of the FDA-approved drug library for BAZ-containing compounds identified 12 drugs with the benzimidazole-like substructure. When these compounds were re-docked into GP/ACE2 interface, the consensus docking identified bazedoxifene as the hit. In vitro RBD/ACE2 inhibition kinetics showed micromolar IC50 value (1.237 µM) in the presence of bazedoxifene. Molecular dynamics simulation of RBD/ACE2 in the presence BAZ resulted in loss of contact and specific hydrogen-bond interaction required for RBD/ACE2 stability. Taken together, these findings identified benzimidazole scaffold as a building block for developing novel RBD/ACE2 complex inhibitor and provided mechanistic basis for the use of bazedoxifene as a repurposable drug for the treatment of COVID-19 acting at RBD/ACE2 interface.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Domínios Proteicos , Ligação Proteica , Simulação de Dinâmica Molecular , Benzimidazóis , Simulação de Acoplamento Molecular
6.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768488

RESUMO

High blood pressure (HBP) has been implicated as a major risk factor for cardiovascular diseases in several populations, including individuals of African ancestry. Despite the elevated burden of HBP-induced cardiovascular diseases in Africa and other populations of African descent, limited genetic studies have been carried out to explore the genetic mechanism driving this phenomenon. We performed genome-wide association univariate and multivariate analyses of both systolic (SBP) and diastolic blood pressure (DBP) traits in 77, 850 individuals of African ancestry. We used summary statistics data from six independent cohorts, including the African Partnership for Chronic Disease Research (APCDR), the UK Biobank, and the Million Veteran Program (MVP). FUMA was used to annotate, prioritize, visualize, and interpret our findings to gain a better understanding of the molecular mechanism(s) underlying the genetics of BP traits. Finally, we undertook a Bayesian fine-mapping analysis to identify potential causal variants. Our meta-analysis identified 10 independent variants associated with SBP and 9 with DBP traits. Whilst our multivariate GWAS method identified 21 independent signals, 18 of these SNPs have been previously identified. SBP was linked to gene sets involved in biological processes such as synapse assembly and cell-cell adhesion via plasma membrane adhesion. Of the 19 independent SNPs identified in the BP meta-analysis, only 11 variants had posterior probability (PP) of > 50%, including one novel variant: rs562545 (MOBP, PP = 77%). To facilitate further research and fine-mapping of high-risk loci/variants in highly susceptible groups for cardiovascular disease and other related traits, large-scale genomic datasets are needed. Our findings highlight the importance of including ancestrally diverse populations in large GWASs and the need for diversity in genetic research.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , População Negra/genética , Hipertensão/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
7.
Nutr Metab Cardiovasc Dis ; 32(6): 1511-1518, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461751

RESUMO

BACKGROUND AND AIMS: Obesity is one of the leading causes of non-communicable diseases (NCD). Thus, NCD risk varies in obese individuals based on the location of their fat depots; while subcutaneous adiposity is protective, visceral adiposity increases NCD risk. Although, previously anthropometric traits have been used to quantify body shape in low-income settings, there is no consensus on how it should be assessed. Hence, there is a growing interest to evaluate body shape derived from the principal component analysis (PCA) of anthropometric traits; however, this is yet to be explored in individuals of African ancestry whose body shape is different from those of Europeans. We set out to capture body shape in its multidimensional structure and examine the association between genetic variants and body shape in individuals of African ancestry. METHOD AND RESULTS: We performed a genome-wide association study (GWAS) for body shape derived from PCA analysis of anthropometric traits in the Ugandan General Population Cohort (GPC, n = 6407) and the South African Zulu Cohort (SZC, n = 2595), followed by a GWAS meta-analysis to assess the genetic variants associated with body shape. We identified variants in FGF12, GRM8, TLX1NB and TRAP1 to be associated with body shape. These genes were different from the genes been associated with BMI, height, weight, WC and waist-hip ration in continental Africans. Notably, we also observed that a standard deviation change in body shape was associated with an increase in blood pressure and blood lipids. CONCLUSION: Variants associated with body shape, as a composite variable might be different for those of individual anthropometric traits. Larger studies are required to further explore these phenomena.


Assuntos
Estudo de Associação Genômica Ampla , Doenças não Transmissíveis , Adiposidade/genética , Índice de Massa Corporal , Fatores de Crescimento de Fibroblastos , Loci Gênicos , Estudo de Associação Genômica Ampla/métodos , Proteínas de Choque Térmico HSP90/genética , Humanos , Obesidade/diagnóstico , Obesidade/epidemiologia , Obesidade/genética , Somatotipos , Relação Cintura-Quadril
8.
Stroke ; 52(8): 2680-2684, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078102

RESUMO

BACKGROUND AND PURPOSE: Metabolic traits affect ischemic stroke (IS) risk, but the degree to which this varies across different ethnic ancestries is not known. Our aim was to apply Mendelian randomization to investigate the causal effects of type 2 diabetes (T2D) liability and lipid traits on IS risk in African ancestry individuals, and to compare them to estimates obtained in European ancestry individuals. METHODS: For African ancestry individuals, genetic proxies for T2D liability and circulating lipids were obtained from a meta-analysis of the African Partnership for Chronic Disease Research study, the UK Biobank, and the Million Veteran Program (total N=77 061). Genetic association estimates for IS risk were obtained from the Consortium of Minority Population Genome-Wide Association Studies of Stroke (3734 cases and 18 317 controls). For European ancestry individuals, genetic proxies for the same metabolic traits were obtained from Million Veteran Program (lipids N=297 626, T2D N=148 726 cases, and 965 732 controls), and genetic association estimates for IS risk were obtained from the MEGASTROKE study (34 217 cases and 406 111 controls). Random-effects inverse-variance weighted Mendelian randomization was used as the main method, complemented with sensitivity analyses more robust to pleiotropy. RESULTS: Higher genetically proxied T2D liability, LDL-C (low-density lipoprotein cholesterol), total cholesterol and lower genetically proxied HDL-C (high-density lipoprotein cholesterol) were associated with increased risk of IS in African ancestry individuals (odds ratio per doubling the odds of T2D liability [95% CI], 1.09 [1.07-1.11]; per standard-deviation increase in LDL-C, 1.12 [1.04-1.21]; total cholesterol: 1.23 [1.06-1.43]; HDL-C, 0.93 [0.89-0.99]). There was no evidence for differences in these estimates when performing analyses in European ancestry individuals. CONCLUSIONS: Our analyses support a causal effect of T2D liability and lipid traits on IS risk in African ancestry individuals, with Mendelian randomization estimates similar to those obtained in European ancestry individuals.


Assuntos
População Negra/genética , Análise da Randomização Mendeliana/métodos , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética , Adulto , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido/epidemiologia
9.
Chem Biodivers ; 18(9): e2100204, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34252268

RESUMO

Parkinson's disease (PD) is one of the most targeted neurodegenerative diseases in clinical research. Awareness of research is due to its increasing number of affected people worldwide. The pathology of PD has been linked to several key proteins upregulation such as the catechol O-Methyltransferase (COMT). Hence, the synthesis of compounds possessing inhibitory capacity has been the frontline of research in recent years. Several compounds have been synthesized among which is the nitrocatechol. However, major limitations associated with the nitrocatechol scaffold include the inability to possess adequate CNS penetration properties and hepatic toxicity associated with the compounds. However, a series of bicyclic hydroxypyridones compounds were synthesized to evaluate their inhibitory potentials on COMT protein with compound 38 (c38) 2-[(2,4-dichlorophenyl)methyl]-7-hydroxy-1,2,3,4-tetrahydro-8H-pyrido[1,2-a]pyrazin-8-one shown to have a 40 fold increase level coverage in its IC50 over brain exposure when compared to the other synthesized compound. The molecular dynamics method was employed to understand the nature of interaction exhibited by c38. Molecular mechanics of c38 revealed a disruptive effect on the secondary structure of COMT protein. Per residue decomposition analysis revealed similar crucial residues involved in the favorable binding of c38 and tolcapone implicated its increased inhibitory capacity on COMT in preventing PD. Free binding energy (ΔGbind ) of c38 further revealed the inhibitory capacity towards COMT protein in comparison to the FDA approved tolcapone. Ligand mobility analysis of both compounds showed a timewise different mobility pattern across the simulation time frame at the active site pocket of the protein connoting the different inhibitory potency exhibited by c38 and tolcapone. Findings from this study revealed optimization of c38 could facilitate the discovery of new compounds with enhanced inhibitory properties towards COMT in treating PD.


Assuntos
Antiparkinsonianos/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/química , Inibidores de Catecol O-Metiltransferase/química , Humanos , Estrutura Molecular , Doença de Parkinson/metabolismo , Termodinâmica
10.
Chem Biodivers ; 18(1): e2000802, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33289285

RESUMO

Numerous studies have established the involvement of Poly (ADP-ribose) Polymerase-1 (PARP-1) in cancer presenting it as an important therapeutic target over recent years. Although homology among the PARP protein family makes selective targeting difficult, two compounds [d11 (0.939 µM) and d21 (0.047 µM)] with disparate inhibitory potencies against PARP-1 were recently identified. In this study, free energy calculations and molecular simulations were used to decipher underlying mechanisms of differential PARP-1 inhibition exhibited by the two compounds. The thermodynamics calculation revealed that compound d21 had a relatively higher ΔGbind than d11. High involvement of van der Waal and electrostatic effects potentiated the affinity of d21 at PARP-1 active site. More so, incorporated methyl moiety in d11 accounted for steric hindrance which, in turn, prevented complementary interactions of key site residues such as TYR889, MET890, TYR896, TYR907. Conformational studies also revealed that d21 is more stabilized for interactions in the active site compared to d11. We believe that findings from this study would provide an important avenue for the development of selective PARP-1 inhibitors.


Assuntos
Azepinas/química , Oxidiazóis/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Azepinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Halogênios/química , Humanos , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Análise de Componente Principal , Eletricidade Estática , Termodinâmica
11.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071665

RESUMO

Halogens have been reported to play a major role in the inhibition of monoamine oxidase (MAO), relating to diverse cognitive functions of the central nervous system. Pyrazoline/halogenated pyrazolines were investigated for their inhibitory activities against human monoamine oxidase-A and -B. Halogen substitutions on the phenyl ring located at the fifth position of pyrazoline showed potent MAO-B inhibition. Compound 3-(4-ethoxyphenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole (EH7) showed the highest potency against MAO-B with an IC50 value of 0.063 µM. The potencies against MAO-B were increased in the order of -F (in EH7) > -Cl (EH6) > -Br (EH8) > -H (EH1). The residual activities of most compounds for MAO-A were > 50% at 10 µM, except for EH7 and EH8 (IC50 = 8.38 and 4.31 µM, respectively). EH7 showed the highest selectivity index (SI) value of 133.0 for MAO-B, followed by EH6 at > 55.8. EH7 was a reversible and competitive inhibitor of MAO-B in kinetic and reversibility experiments with a Ki value of 0.034 ± 0.0067 µM. The molecular dynamics study documented that EH7 had a good binding affinity and motional movement within the active site with high stability. It was observed by MM-PBSA that the chirality had little effect on the overall binding of EH7 to MAO-B. Thus, EH7 can be employed for the development of lead molecules for the treatment of various neurodegenerative disorders.


Assuntos
Simulação de Dinâmica Molecular , Inibidores da Monoaminoxidase/química , Pirazóis/química , Barreira Hematoencefálica/efeitos dos fármacos , Domínio Catalítico , Química Farmacêutica/métodos , Cognição/efeitos dos fármacos , Desenho de Fármacos , Halogênios/química , Humanos , Concentração Inibidora 50 , Cinética , Modelos Químicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Movimento (Física) , Análise de Componente Principal , Ligação Proteica , Proteínas Recombinantes/química , Estereoisomerismo , Relação Estrutura-Atividade
13.
BMC Res Notes ; 17(1): 89, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539217

RESUMO

O-GlcNAcylation is a nutrient-sensing post-translational modification process. This cycling process involves two primary proteins: the O-linked N-acetylglucosamine transferase (OGT) catalysing the addition, and the glycoside hydrolase OGA (O-GlcNAcase) catalysing the removal of the O-GlCNAc moiety on nucleocytoplasmic proteins. This process is necessary for various critical cellular functions. The O-linked N-acetylglucosamine transferase (OGT) gene produces the OGT protein. Several studies have shown the overexpression of this protein to have biological implications in metabolic diseases like cancer and diabetes mellitus (DM). This study retrieved 159 SNPs with clinical significance from the SNPs database. We probed the functional effects, stability profile, and evolutionary conservation of these to determine their fit for this research. We then identified 7 SNPs (G103R, N196K, Y228H, R250C, G341V, L367F, and C845S) with predicted deleterious effects across the four tools used (PhD-SNPs, SNPs&Go, PROVEAN, and PolyPhen2). Proceeding with this, we used ROBETTA, a homology modelling tool, to model the proteins with these point mutations and carried out a structural bioinformatics method- molecular docking- using the Glide model of the Schrodinger Maestro suite. We used a previously reported inhibitor of OGT, OSMI-1, as the ligand for these mutated protein models. As a result, very good binding affinities and interactions were observed between this ligand and the active site residues within 4Å of OGT. We conclude that these mutation points may be used for further downstream analysis as drug targets for treating diabetes mellitus.


Assuntos
Diabetes Mellitus , Mutação Puntual , Humanos , Simulação de Acoplamento Molecular , Ligantes , Mutação , Diabetes Mellitus/genética , Processamento de Proteína Pós-Traducional
14.
Pathogens ; 12(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111477

RESUMO

The sugar molecule N-glycolylneuraminic acid (Neu5Gc) is one of the most common sialic acids discovered in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc, and it is encoded by the CMAH gene. On the one hand, food metabolic incorporation of Neu5Gc has been linked to specific human diseases. On the other hand, Neu5Gc has been shown to be highly preferred by some pathogens linked to certain bovine diseases. We used various computational techniques to perform an in silico functional analysis of five non-synonymous single-nucleotide polymorphisms (nsSNPs) of the bovine CMAH (bCMAH) gene identified from the 1000 Bull Genomes sequence data. The c.1271C>T (P424L) nsSNP was predicted to be pathogenic based on the consensus result from different computational tools. The nsSNP was also predicted to be critical based on sequence conservation, stability, and post-translational modification site analysis. According to the molecular dynamic simulation and stability analysis, all variations promoted stability of the bCMAH protein, but mutation A210S significantly promoted CMAH stability. In conclusion, c.1271C>T (P424L) is expected to be the most harmful nsSNP among the five detected nsSNPs based on the overall studies. This research could pave the way for more research associating pathogenic nsSNPs in the bCMAH gene with diseases.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38550935

RESUMO

Cardiovascular diseases (CVDs) are complex in their aetiology, arising due to a combination of genetics, lifestyle and environmental factors. By nature of this complexity, different CVDs vary in their molecular mechanisms, clinical presentation and progression. Although extensive efforts are being made to develop novel therapeutics for CVDs, genetic heterogeneity is often overlooked in the development process. By considering molecular mechanisms at an individual and ancestral level, a richer understanding of the influence of environmental and lifestyle factors can be gained and more refined therapeutic interventions can be developed. It is therefore expedient to understand the molecular and clinical heterogeneity in CVDs that exists across different populations. In this review, we highlight how the mechanisms underlying CVDs vary across diverse population ancestry groups due to genetic heterogeneity. We then discuss how such genetic heterogeneity is being leveraged to inform therapeutic interventions and personalised medicine, highlighting examples across the CVD spectrum. Finally, we present an overview of how polygenic risk scores and Mendelian randomisation can foster more robust insight into disease mechanisms and therapeutic intervention in diverse populations. Fulfilment of the vision of precision medicine requires more exhaustive leveraging of the genetic variability across diverse ancestry populations to improve our understanding of disease onset, progression and response to therapeutic intervention.

16.
Nat Commun ; 14(1): 7279, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949886

RESUMO

Statistical fine-mapping helps to pinpoint likely causal variants underlying genetic association signals. Its resolution can be improved by (i) leveraging information between traits; and (ii) exploiting differences in linkage disequilibrium structure between diverse population groups. Using association summary statistics, MGflashfm jointly fine-maps signals from multiple traits and population groups; MGfm uses an analogous framework to analyse each trait separately. We also provide a practical approach to fine-mapping with out-of-sample reference panels. In simulation studies we show that MGflashfm and MGfm are well-calibrated and that the mean proportion of causal variants with PP > 0.80 is above 0.75 (MGflashfm) and 0.70 (MGfm). In our analysis of four lipids traits across five population groups, MGflashfm gives a median 99% credible set reduction of 10.5% over MGfm. MGflashfm and MGfm only require summary level data, making them very useful fine-mapping tools in consortia efforts where individual-level data cannot be shared.


Assuntos
Estudo de Associação Genômica Ampla , Grupos Populacionais , Humanos , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação
17.
PLoS One ; 18(2): e0280344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809439

RESUMO

BACKGROUND: Liver disease is any condition that causes liver damage and inflammation and may likely affect the function of the liver. Vital biochemical screening tools that can be used to evaluate the health of the liver and help diagnose, prevent, monitor, and control the development of liver disease are known as liver function tests (LFT). LFTs are performed to estimate the level of liver biomarkers in the blood. Several factors are associated with differences in concentration levels of LFTs in individuals, such as genetic and environmental factors. The aim of our study was to identify genetic loci associated with liver biomarker levels with a shared genetic basis in continental Africans, using a multivariate genome-wide association study (GWAS) approach. METHODS: We used two distinct African populations, the Ugandan Genome Resource (UGR = 6,407) and South African Zulu cohort (SZC = 2,598). The six LFTs used in our analysis were: aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin, and albumin. A multivariate GWAS of LFTs was conducted using the exact linear mixed model (mvLMM) approach implemented in GEMMA and the resulting P-values were presented in Manhattan and quantile-quantile (QQ) plots. First, we attempted to replicate the findings of the UGR cohort in SZC. Secondly, given that the genetic architecture of UGR is different from that of SZC, we further undertook similar analysis in the SZC and discussed the results separately. RESULTS: A total of 59 SNPs reached genome-wide significance (P = 5x10-8) in the UGR cohort and with 13 SNPs successfully replicated in SZC. These included a novel lead SNP near the RHPN1 locus (lead SNP rs374279268, P-value = 4.79x10-9, Effect Allele Frequency (EAF) = 0.989) and a lead SNP at the RGS11 locus (lead SNP rs148110594, P-value = 2.34x10-8, EAF = 0.928). 17 SNPs were significant in the SZC, while all the SNPs fall within a signal on chromosome 2, rs1976391 mapped to UGT1A was identified as the lead SNP within this region. CONCLUSIONS: Using multivariate GWAS method improves the power to detect novel genotype-phenotype associations for liver functions not found with the standard univariate GWAS in the same dataset.


Assuntos
Estudo de Associação Genômica Ampla , Hepatopatias , Humanos , gama-Glutamiltransferase , Testes de Função Hepática , Polimorfismo de Nucleotídeo Único , População Africana
18.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993208

RESUMO

With the rapid spread of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen agent of COVID-19 pandemic created a serious threat to global public health, requiring the most urgent research for potential therapeutic agents. The availability of genomic data of SARS-CoV-2 and efforts to determine the protein structure of the virus facilitated the identification of potent inhibitors by using structure-based approach and bioinformatics tools. Many pharmaceuticals have been proposed for the treatment of COVID-19, although their effectiveness has not been assessed yet. However, it is important to find out new-targeted drugs to overcome the resistance concern. Several viral proteins such as proteases, polymerases or structural proteins have been considered as potential therapeutic targets. But the virus target must be essential for host invasion match some drugability criterion. In this Work, we selected the highly validated pharmacological target main protease Mpro and we performed high throughput virtual screening of African Natural Products Databases such as NANPDB, EANPDB, AfroDb, and SANCDB to identify the most potent inhibitors with the best pharmacological properties. In total, 8753 natural compounds were virtually screened by AutoDock vina against the main protease of SARS-CoV-2. Two hundred and five (205) compounds showed high-affinity scores (less than - 10.0 Kcal/mol), while fifty-eight (58) filtered through Lipinski's rules showed better affinity than known Mpro inhibitors (i.e., ABBV-744, Onalespib, Daunorubicin, Alpha-ketoamide, Perampanel, Carprefen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin, Ethyl biscoumacetate…). Those promising compounds could be considered for further investigations toward the developpement of SARS-CoV-2 drug development.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37581526

RESUMO

BACKGROUND: Blocking the oncogenic Wnt//ß-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; tankyrase 2 (TNKS2), protein kinase B (AKT), and cyclin-dependent kinase 9 (CDK9), which propagate the oncogenic Wnt/ß-catenin signalling pathway. METHODS: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS: Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION: The following structural insights provide a starting point for understanding the pan-inhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.

20.
J Mol Model ; 29(4): 122, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995499

RESUMO

CONTEXT: [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS: In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS: Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Simulação de Acoplamento Molecular , Domínio Catalítico , Proteínas , Metiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA