Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(8): 1983-1995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358533

RESUMO

Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.


Assuntos
Bivalves , Intoxicação por Frutos do Mar , Animais , Humanos , Toxinas Marinhas/química , Nariz Eletrônico , Bivalves/química , Frutos do Mar/análise , Carbamatos , Intoxicação por Frutos do Mar/etiologia
2.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930318

RESUMO

Cancer is a major worldwide public health problem. Although there have already been astonishing advances in cancer diagnosis and treatment, the scientific community continues to make huge efforts to develop new methods to treat cancer. The main objective of this work is to prepare, using a green sol-gel method with coconut water powder (CWP), a new nanocomposite with a mixture of Gd3Fe5O12 and ZnFe2O4, which has never been synthesized previously. Therefore, we carried out a structural (DTA-TG and X-ray diffraction), morphological (SEM), and magnetic (VSM and hyperthermia) characterization of the prepared samples. The prepared nanocomposite denoted a saturation magnetization of 11.56 emu/g at room temperature with a ferromagnetic behavior and with a specific absorption rate (SAR) value of 0.5 ± 0.2 (W/g). Regarding cytotoxicity, for concentrations < 10 mg/mL, it does not appear to be toxic. Although the obtained results were interesting, the high particle size was identified as a problem for the use of this nanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA