Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Fish Physiol Biochem ; 49(6): 1381-1390, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948014

RESUMO

This study presents a novel non-lethal sampling method for assessing fatty acid (FA) composition in juvenile European sea bass (Dicentrarchus labrax) using subcutaneous white muscle biopsies. This research aimed to evaluate the suitability of the biopsy for FA analysis using two lipid extraction protocols and comparing them to a lethal routine method. The results showed that a mass of fresh tissue as low as 1.4 mg provided good quality FA chromatograms for both reserve and membrane lipids. Although the biopsy method displayed high variability in terms of FA quantity among intra-individual replicates, it showed good FA profile repeatability in both reserve and membrane lipids. The study highlights the potential of this non-lethal approach for studying FA dynamics in fish, with its application being particularly promising for ecological and experimental studies. However, careful biopsy implementation is recommended to account for potential lipid droplet and lipid distribution variability within the tissue.


Assuntos
Bass , Ácidos Graxos , Animais , Ácidos Graxos/análise , Bass/fisiologia , Músculos/química , Lipídeos de Membrana
2.
Mar Drugs ; 20(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36005502

RESUMO

The production of non-fish based docosahexaenoic acid (DHA) for feed and food has become a critical need in our global context of over-fishing. The industrial-scale production of DHA-rich Thraustochytrids could be an alternative, if costs turned out to be competitive. In order to reduce production costs, this study addresses the feasibility of the non-axenic (non-sterile) cultivation of Aurantiochytrium mangrovei on industrial substrates (as nitrogen and mineral sources and glucose syrup as carbon and energy sources), and its scale-up from laboratory (250 mL) to 500 L cultures. Pilot-scale reactors were airlift cylinders. Batch and fed-batch cultures were tested. Cultures over 38 to 62 h achieved a dry cell weight productivity of 3.3 to 5.5 g.L-1.day-1, and a substrate to biomass yield of up to 0.3. DHA productivity ranged from 10 to 0.18 mg.L-1.day-1. Biomass productivity appears linearly related to oxygen transfer rate. Bacterial contamination of cultures was low enough to avoid impacts on fatty acid composition of the biomass. A specific work on microbial risks assessment (in supplementary files) showed that the biomass can be securely used as feed. However, to date, there is a law void in EU legislation regarding the recycling of nitrogen from digestate from animal waste for microalgae biomass and its usage in animal feed. Overall, the proposed process appears similar to the industrial yeast production process (non-axenic heterotrophic process, dissolved oxygen supply limiting growth, similar cell size). Such similarity could help in further industrial developments.


Assuntos
Nitrogênio , Estramenópilas , Animais , Biomassa , Reatores Biológicos/microbiologia , Conservação dos Recursos Naturais , Ácidos Docosa-Hexaenoicos , Pesqueiros , Oxigênio
3.
Environ Monit Assess ; 194(2): 96, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029759

RESUMO

Few estuaries remain unaffected by water management and altered freshwater deliveries. The Caloosahatchee River Estuary is a perfect case study for assessing the impact of altered hydrology on natural oyster reef (Crassostrea virginica) populations. The watershed has been highly modified and greatly enlarged by an artificial connection to Lake Okeechobee. Accordingly, to generate data to support water management recommendations, this study monitored various oyster biometrics over 15 years along the primary salinity gradient. Oyster reef densities were significantly affected by both prolonged high volume freshwater releases creating hyposaline conditions at upstream sites and by a lack of freshwater input creating hypersaline conditions at downstream sites. Low freshwater input led to an increase in disease caused by Perkinsus marinus and predation. Moderate (< 2000 cfs) and properly timed (winter/spring) freshets benefited oysters with increased gametogenesis, good larval mixing, and a reprieve from disease. If high volume freshets occurred in the late summer, extensive mortality occurred at the upstream site due to low salinity. These findings suggest freshwater releases in the late summer, when reproductive stress is at its peak and pelagic larvae are most vulnerable, should be limited to < 2000 cfs, but that longer freshets (1-3 weeks) in the winter and early spring (e.g., December-April) benefit oysters by reducing salinity and lessening disease intensity. Similar strategies can be employed in other managed systems, and patterns regarding the timing of high volume flows are applicable to all estuaries where the management of healthy oyster reefs is a priority.


Assuntos
Crassostrea , Estuários , Animais , Monitoramento Ambiental , Água Doce , Reprodução
4.
J Invertebr Pathol ; 184: 107603, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33971219

RESUMO

The aetiological agent Perkinsus olseni is globally recognised as a major threat for shellfish production considering its wide geographical distribution across Asia, Europe, Australia and South America. Another species, Perkinsus chesapeaki, which has never been known to be associated with significant mortality events, was recently detected along French coasts infecting clam populations sporadically in association with P. olseni. Identifying potential cryptic infections affecting Ruditapes philippinarum is essential to develop appropriate host resource management strategies. Here, we developed a molecular method based on duplex real-time quantitative PCR for the simultaneous detection of these two parasites, P. olseni and P. chesapeaki, in the different clam tissues: gills, digestive gland, foot, mantle, adductor muscle and the rest of the soft body. We firstly checked the presence of possible PCR inhibitors in host tissue samples. The qPCR reactions were inhibited depending on the nature of the host organ. The mantle and the rest of the soft body have a high inhibitory effect from threshold of host gDNA concentration of 2 ng.µL-1, the adductor muscle and the foot have an intermediate inhibition of 5 ng.µL-1, and the gills and digestive gland do not show any inhibition of the qPCR reaction even at the highest host gDNA concentration of 20 ng.µL-1. Then, using the gills as a template, the suitability of the molecular technique was checked in comparison with the Ray's Fluid Thioglycolate Medium methodology recommended by the World Organisation for Animal Health. The duplex qPCR method brought new insights and unveiled cryptic infections as the co-occurrence of P. olseni and P. chesapeaki from in situ tissue samples in contrast to the RFTM diagnosis. The development of this duplex qPCR method is a fundamental work to monitor in situ co-infections that will lead to optimised resource management and conservation strategies to deal with emerging diseases.


Assuntos
Alveolados/isolamento & purificação , Bivalves/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alveolados/genética , Animais , Especificidade da Espécie
5.
Mar Drugs ; 19(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209313

RESUMO

Pacific oysters (Crassostrea gigas) may bio-accumulate high levels of paralytic shellfish toxins (PST) during harmful algal blooms of the genus Alexandrium. These blooms regularly occur in coastal waters, affecting oyster health and marketability. The aim of our study was to analyse the PST-sensitivity of nerves of Pacific oysters in relation with toxin bio-accumulation. The results show that C. gigas nerves have micromolar range of saxitoxin (STX) sensitivity, thus providing intermediate STX sensitivity compared to other bivalve species. However, theses nerves were much less sensitive to tetrodotoxin. The STX-sensitivity of compound nerve action potential (CNAP) recorded from oysters experimentally fed with Alexandrium minutum (toxic-alga-exposed oysters), or Tisochrysis lutea, a non-toxic microalga (control oysters), revealed that oysters could be separated into STX-resistant and STX-sensitive categories, regardless of the diet. Moreover, the percentage of toxin-sensitive nerves was lower, and the STX concentration necessary to inhibit 50% of CNAP higher, in recently toxic-alga-exposed oysters than in control bivalves. However, no obvious correlation was observed between nerve sensitivity to STX and the STX content in oyster digestive glands. None of the nerves isolated from wild and farmed oysters was detected to be sensitive to tetrodotoxin. In conclusion, this study highlights the good potential of cerebrovisceral nerves of Pacific oysters for electrophysiological and pharmacological studies. In addition, this study shows, for the first time, that C. gigas nerves have micromolar range of STX sensitivity. The STX sensitivity decreases, at least temporary, upon recent oyster exposure to dinoflagellates producing PST under natural, but not experimental environment.


Assuntos
Crassostrea , Saxitoxina/toxicidade , Tetrodotoxina/toxicidade , Animais , Organismos Aquáticos , Fenômenos Eletrofisiológicos , Oceano Pacífico
6.
Mar Drugs ; 20(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35049877

RESUMO

The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, "stopping" at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered "end-products". To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Haptófitas , Animais , Organismos Aquáticos , Vias Biossintéticas , Dióxido de Carbono
7.
Proc Natl Acad Sci U S A ; 113(9): 2430-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831072

RESUMO

Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.


Assuntos
Ostreidae/fisiologia , Plásticos/farmacologia , Poliestirenos/farmacologia , Reprodução/efeitos dos fármacos , Animais , Ostreidae/genética , Ostreidae/metabolismo , Proteoma , Transcriptoma
8.
Anal Bioanal Chem ; 410(25): 6663-6676, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30051208

RESUMO

Plastics are found to be major debris composing marine litter; microplastics (MP, < 5 mm) are found in all marine compartments. The amount of MPs tends to increase with decreasing size leading to a potential misidentification when only visual identification is performed. These last years, pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) has been used to get information on the composition of polymers with some applications on MP identification. The purpose of this work was to optimize and then validate a Py-GC/MS method, determine limit of detection (LOD) for eight common polymers, and apply this method on environmental MP. Optimization on multiple GC parameters was carried out using polyethylene (PE) and polystyrene (PS) microspheres. The optimized Py-GC/MS method require a pyrolysis temperature of 700 °C, a split ratio of 5 and 300 °C as injector temperature. Performance assessment was accomplished by performing repeatability and intermediate precision tests and calculating limit of detection (LOD) for common polymers. LODs were all below 1 µg. For performance assessment, identification remains accurate despite a decrease in signal over time. A comparison between identifications performed with Raman micro spectroscopy and with Py-GC/MS was assessed. Finally, the optimized method was applied to environmental samples, including plastics isolated from sea water surface, beach sediments, and organisms collected in the marine environment. The present method is complementary to µ-Raman spectroscopy as Py-GC/MS identified pigment containing particles as plastic. Moreover, some fibers and all particles from sediment and sea surface were identified as plastic. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Plásticos/análise , Poluentes Químicos da Água/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção
9.
J Invertebr Pathol ; 159: 1-5, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30414760

RESUMO

Disseminated neoplasia (DN) is a disease that affects bivalves worldwide and can lead to mass mortalities. In the present study, a pathological survey conducted from December 2011 to August 2012 in Crassostrea gasar, an oyster of commercial interest in northeast Brazil, revealed the occurrence of DN in oysters reared in the Mamanguape estuary, Paraíba State, Brazil. The present work describes the pathological and functional aspects of the disease in C. gasar by light microscopy (haemolymph cell monolayer and histological section) and flow cytometry analyses. The prevalence of the disease was low (7.1% of 182 oysters examined). Enlarged (neoplastic) cells showed reniform, ovoid or circular-shaped nuclei, with prominent nucleoli and predominantly short filipodia. They were found in the haemolymph and infiltrated the connective tissues of different organs, including the digestive system, gills and gonads, as well as in the sinuses and vessels. Three levels of progression of DN in tissues were observed, light (61.5%), moderate (15.4%) and advanced (23.1%). The viability of neoplastic cells circulating in the haemolymph (97.4%) was similar to that in the haemocytes (95.7%). The neoplastic cells showed low phagocytic ability (3.9%) compared with that of haemocytes (42.4%). Conversely, reactive oxygen species production (679 A.U.) and the total haemocyte count (3.9 × 106 cells mL-1) were higher in the affected oysters than in unaffected oysters (268 A.U. and 1.5 × 106 cells mL-1, respectively). The low prevalence and primarily mild intensity found in the sampled oysters does not preclude an impact at the population level. A timely survey of DN is thus recommended in order to assess the severity and impact of this disease in wild and cultured populations of C. gasar oysters.


Assuntos
Crassostrea , Frutos do Mar , Animais , Brasil/epidemiologia , Prevalência
10.
Mar Drugs ; 15(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106838

RESUMO

Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters.


Assuntos
Crassostrea/metabolismo , Toxinas Marinhas/metabolismo , Ostreidae/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Crassostrea/genética , Dinoflagellida/genética , Dinoflagellida/metabolismo , Ostreidae/genética , Filogenia , Saxitoxina/metabolismo , Frutos do Mar
11.
Fish Shellfish Immunol ; 51: 104-115, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26882980

RESUMO

The Pacific oyster Crassostrea gigas is an important commercial species cultured throughout the world. Oyster production practices often include transfers of animals into new environments that can be stressful, especially at young ages. This study was undertaken to determine if a toxic Alexandrium bloom, occurring repeatedly in French oyster beds, could modulate juvenile oyster cellular immune responses (i.e. hemocyte variables). We simulated planting on commercial beds by conducting a cohabitation exposure of juvenile, "specific pathogen-free" (SPF) oysters (naïve from the environment) with previously field-exposed oysters to induce interactions with new microorganisms. Indeed, toxic Alexandrium spp. exposures have been reported to modulate bivalve interaction with specific pathogens, as well as physiological and immunological variables in bivalves. In summary, SPF oysters were subjected to an artificial bloom of Alexandrium catenella, simultaneously with a cohabitation challenge. Exposure to A. catenella, and thus to the paralytic shellfish toxins (PSTs) and extracellular bioactive compounds produced by this alga, induced higher concentration, size, complexity and reactive oxygen species (ROS) production of circulating hemocytes. Challenge by cohabitation with field-exposed oysters also activated these hemocyte responses, suggesting a defense response to new microorganism exposure. These hemocyte responses to cohabitation challenge, however, were partially inhibited by A. catenella exposure, which enhanced hemocyte mortality, suggesting either detrimental effects of the interaction of both stressors on immune capacity, or the implementation of an alternative immune strategy through apoptosis. Indeed, no infection with specific pathogens (herpesvirus OsHV-1 or Vibrio aesturianus) was detected. Additionally, lower PST accumulation in challenged oysters suggests a physiological impairment through alteration of feeding-related processes. Overall, results of this study show that a short-term exposure to A. catenella combined with an exposure to a modified microbial community inhibited some hemocyte responses, and likely compromised physiological condition of the juvenile oysters.


Assuntos
Crassostrea/efeitos dos fármacos , Crassostrea/imunologia , Dinoflagellida/fisiologia , Toxinas Marinhas/toxicidade , Animais , Crassostrea/microbiologia , Crassostrea/virologia , Vírus de DNA/fisiologia , Dinoflagellida/química , Hemócitos/imunologia , Hemócitos/microbiologia , Hemócitos/virologia , Vibrio/fisiologia
12.
Environ Sci Technol ; 50(20): 10988-10996, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27640445

RESUMO

Microplastics collected at sea harbor a high diversity of microorganisms, including some Vibrio genus members, raising questions about the role of microplastics as a novel ecological niche for potentially pathogenic microorganisms. In the present study, we investigated the adhesion dynamics of Vibrio crassostreae on polystyrene microparticles (micro-PS) using electronic and fluorescence microscopy techniques. Micro-PS were incubated with bacteria in different media (Zobell culture medium and artificial seawater) with or without natural marine aggregates. The highest percentage of colonized particles (38-100%) was observed in Zobell culture medium, which may be related to nutrient availability for production of pili and exopolysaccharide adhesion structures. A longer bacterial attachment (6 days) was observed on irregular micro-PS compared to smooth particles (<10 h), but complete decolonization of all particles eventually occurred. The presence of natural marine agreggates around micro-PS led to substantial and perennial colonization featuring monospecific biofilms at the surface of the aggregates. These exploratory results suggest that V. crassostreae may be a secondary colonizer of micro-PS, requiring a multispecies community to form a durable adhesion phenotype. Temporal assessment of microbial colonization on microplastics at sea using imaging and omics approaches are further indicated to better understand the microplastics colonization dynamics and species assemblages.

13.
Biol Reprod ; 93(5): 118, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423125

RESUMO

In the Pacific oyster, spermatozoa are characterized by a remarkably long movement phase (i.e., over 24 h) sustained by a capacity to maintain intracellular ATP level. To gain information on oxidative phosphorylation (OXPHOS) functionality during the motility phase of Pacific oyster spermatozoa, we studied 1) changes in spermatozoal mitochondrial activity, that is, mitochondrial membrane potential (MMP), and intracellular ATP content in relation to motion parameters and 2) the involvement of OXPHOS for spermatozoal movement using carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The percentage of motile spermatozoa decreased over a 24 h movement period. MMP increased steadily during the first 9 h of the movement phase and was subsequently maintained at a constant level. Conversely, spermatozoal ATP content decreased steadily during the first 9 h postactivation and was maintained at this level during the following hours of the movement phase. When OXPHOS was decoupled by CCCP, the movement of spermatozoa was maintained 2 h and totally stopped after 4 h of incubation, whereas spermatozoa were still motile in the control after 4 h. Our results suggest that the ATP sustaining flagellar movement of spermatozoa may partially originate from glycolysis or from mobilization of stored ATP or from potential phosphagens during the first 2 h of movement as deduced by the decoupling by CCCP of OXPHOS. However, OXPHOS is required to sustain the long motility phase of Pacific oyster spermatozoa. In addition, spermatozoa may hydrolyze intracellular ATP content during the early part of the movement phase, stimulating mitochondrial activity. This stimulation seems to be involved in sustaining a high ATP level until the end of the motility phase.


Assuntos
Trifosfato de Adenosina/metabolismo , Crassostrea/metabolismo , Fosforilação Oxidativa , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Animais , Masculino , Potencial da Membrana Mitocondrial
14.
J Invertebr Pathol ; 126: 51-63, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25660636

RESUMO

Effects of experimental exposure to Alexandrium fundyense, a Paralytic Shellfish Toxin (PST) producer known to affect bivalve physiological condition, upon eastern oysters, Crassostrea virginica with a variable natural infestation of the digenetic trematode Bucephalus sp. were determined. After a three-week exposure to cultured A. fundyense or to a control algal treatment with a non-toxic dinoflagellate, adult oysters were assessed for a suite of variables: histopathological condition, hematological variables (total and differential hemocyte counts, morphology), hemocyte functions (Reactive Oxygen Species (ROS) production and mitochondrial membrane potential), and expression in gills of genes involved in immune responses and cellular protection (MnSOD, CAT, GPX, MT-IV, galectin CvGal) or suspected to be (Dominin, Segon). By comparing individual oysters infested heavily with Bucephalus sp. and uninfested individuals, we found altered gonad and digestive gland tissue and an inflammatory response (increased hemocyte concentration in circulating hemolymph and hemocyte infiltrations in tissues) associated with trematode infestation. Exposure to A. fundyense led to a higher weighted prevalence of infection by the protozoan parasite Perkinsus marinus, responsible for Dermo disease. Additionally, exposure to A. fundyense in trematode-infested oysters was associated with the highest prevalence of P. marinus infection. These observations suggest that the development of P. marinus infection was advanced by A. fundyense exposure, and that, in trematode-infested oysters, P. marinus risk of infection was higher when exposed to A. fundyense. These effects were associated with suppression of the inflammatory response to trematode infestation by A. fundyense exposure. Additionally, the combination of trematode infestation and A. fundyense exposure caused degeneration of adductor muscle fibers, suggesting alteration of valve movements and catch state, which could increase susceptibility to predation. Altogether, these results suggest that exposure of trematode-infested oysters to A. fundyense can lead to overall physiological weakness that decrease oyster defense mechanisms.


Assuntos
Crassostrea/parasitologia , Dinoflagellida/fisiologia , Interações Hospedeiro-Parasita , Trematódeos/fisiologia , Animais , Crassostrea/imunologia , Hemolinfa/citologia , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
15.
Cytometry A ; 85(12): 1049-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25327519

RESUMO

The Pacific oyster Crassostrea gigas accounts for a large part of shellfish aquaculture production worldwide. Aspects of morphological and functional characteristics of oyster oocytes remain poorly documented, and traditional techniques, such as microscopic observations of shape or fertilization rate, are time and space consuming. The purpose of this study was to assess for the first time viability and reactive oxygen species (ROS) production of Pacific oyster oocytes using flow cytometry (FCM) and to apply this method to determine oocyte responses to in vitro exposure to the toxic dinoflagellate Alexandrium minutum. A culture of A. minutum caused a significant increase in oocyte ROS production, which gradually increased with the age of the culture, but viability was not affected. Effect of the supernatant of the same A. minutum culture did not cause any significant modifications of oocyte morphology, viability, or ROS level. This study confirmed that some oocyte cellular characteristics can be assessed using FCM techniques.


Assuntos
Crassostrea/parasitologia , Citometria de Fluxo/métodos , Oócitos/parasitologia , Infecções Protozoárias em Animais/diagnóstico , Espécies Reativas de Oxigênio/análise , Animais , Sobrevivência Celular , Dinoflagellida , Feminino
16.
Mar Drugs ; 12(6): 3587-607, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24921979

RESUMO

Bacteria are known to influence domoic acid (DA) production by Pseudo-nitzschia spp., but the link between DA production and physiology of diatoms requires more investigation. We compared a toxic P. multiseries to a non-toxic P. delicatissima, investigating links between DA production, physiological parameters, and co-occurring bacteria. Bacterial communities in cultures of both species were reduced by antibiotic treatment, and each of the diatoms was inoculated with the bacterial community of the other species. The physiology of P. delicatissima was minimally affected by the absence of bacteria or the presence of alien bacteria, and no DA was detected. P. multiseries grew faster without bacteria, did not produce a significant amount of DA, and exhibited physiological characteristics of healthy cells. When grown with alien bacteria, P. multiseries did not grow and produced more DA; the physiology of these cells was affected, with decreases in chlorophyll content and photosynthetic efficiency, an increase in esterase activity, and almost 50% mortality of the cells. The alien bacterial community had morphological and cellular characteristics very different from the original bacteria, and the number of free-living bacteria per algal cell was much higher, suggesting the involvement of bacteria in DA production.


Assuntos
Bactérias/metabolismo , Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Toxinas Marinhas/metabolismo , Antibacterianos/farmacologia , Fenômenos Fisiológicos Celulares/fisiologia , Clorofila/metabolismo , Diatomáceas/microbiologia , Diatomáceas/fisiologia , Ácido Caínico/metabolismo , Fotossíntese/fisiologia , Especificidade da Espécie
18.
Mar Environ Res ; 197: 106456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522120

RESUMO

This study evaluated how estuary of origin and ontogenetic stage influence the fatty acid (FA) composition in the tissues of wild European sea bass juvenile. We evidenced tissue-specific patterns, with the brain exhibiting a distinct FA composition from the liver and muscle. Ontogenetic stage and estuary influenced the general FA profile, and particularly the essential FA (EFA) like docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in all tissues. The data also revealed the ability of wild sea bass to modulate, at the molecular level, FA biosynthesis pathways and suggest a potential dietary DHA limitation in the natural environment. The distribution of FA within tissues might reflect shifts in diet, metabolic demands, or adaptations to environmental conditions. This study provides insights about FA dynamics in euryhaline fish during juvenile life stage, improving our understanding of the metabolism need and EFA trophic availability in a changing environment.


Assuntos
Bass , Ácidos Graxos , Animais , Ácidos Graxos/metabolismo , Bass/metabolismo , Estuários , Dieta , Ácido Araquidônico/metabolismo
19.
J Exp Biol ; 216(Pt 9): 1561-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307802

RESUMO

As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.


Assuntos
Crassostrea/metabolismo , Mitocôndrias/metabolismo , Oxigênio/farmacologia , Anaerobiose/efeitos dos fármacos , Animais , Respiração Celular/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Crassostrea/enzimologia , Citocromos/metabolismo , Sistema Digestório/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Brânquias/enzimologia , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Oceano Pacífico , Fosforilação/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
20.
Fish Shellfish Immunol ; 35(2): 319-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23664909

RESUMO

Perkinsus genus includes protozoan parasites of marine mollusks, especially bivalves. In the last four years, this parasite has been detected in mangrove oysters Crassostrea rhizophorae and Crassostrea gasar from the Northeastern region of Brazil. Hemocytes are the key cells of the oyster immune system, being responsible for a variety of cellular and humoral reactions, such as phagocytosis, encapsulation and the release of several effector molecules that control the invasion and proliferation of microorganisms. In Brazil, there is little information on perkinsosis and none on the immune responses of native oysters' species against Perkinsus spp. The objective of this study was to determine the effects of natural infection by Perkinsus sp. on the immunological parameters of mangrove oysters C. gasar cultured in the Mamanguape River Estuary (Paraíba, Brazil). Adults oysters (N = 40/month) were sampled in December 2011, March, May, August and October 2012. Gills were removed and used to determine the presence and intensity of the Perkinsus sp. infection, according to a scale of four levels (1-4), using the Ray's fluid thioglycollate medium assay. Immunological parameters were measured in hemolymph samples by flow cytometry, including: total hemocyte count (THC), differential hemocyte count (DHC), cell mortality, phagocytic capacity, and production of Reactive Oxygen Species (ROS). The plasma was used to determine the hemagglutination activity. The results showed the occurrence of Perkinsus sp. with the highest mean prevalence (93.3%) seen so far in oyster populations in Brazil. Despite that, no oyster mortality was associated. In contrast, we observed an increase in hemocyte mortality and a suppression of two of the main defense mechanisms, phagocytosis and ROS production in infected oysters. The increase in the percentage of blast-like cells on the hemolymph, and the increase in THC in oysters heavily infected (at the maximum intensity, 4) suggest an induction of hemocytes proliferation. The immunological parameters varied over the studied months, which may be attributed to the dynamics of infection by Perkinsus sp. The results of the present study demonstrate that Perkinsus sp. has a deleterious effect on C. gasar immune system, mainly in high intensities, which likely renders oysters more susceptible to other pathogens and diseases.


Assuntos
Alveolados/fisiologia , Crassostrea/imunologia , Crassostrea/microbiologia , Animais , Aquicultura , Brasil , Estuários , Citometria de Fluxo/veterinária , Hemócitos/citologia , Hemócitos/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA