Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nature ; 590(7845): 275-278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568820

RESUMO

Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures1. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA2. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties3, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank-Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys4,5 more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter6-11 and in gold nanocrystal superlattices12 and remain the object of recent discoveries13. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.

2.
Cell ; 141(4): 656-67, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478256

RESUMO

Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fagossomos/metabolismo , Animais , Linhagem Celular , Fenômenos Fisiológicos Celulares , Meios de Cultura , GTP Fosfo-Hidrolases , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Ratos
3.
Hum Genet ; 141(1): 55-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750646

RESUMO

Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission-fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial "dysmorphology" can be helpful in interpreting variants to reach a molecular diagnosis.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Linhagem Celular , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mutação de Sentido Incorreto , Sequenciamento do Exoma
4.
Plant Biotechnol J ; 20(11): 2202-2216, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997958

RESUMO

Crocins are beneficial antioxidants and potential chemotherapeutics that give raise, together with picrocrocin, to the colour and taste of saffron, the most expensive spice, respectively. Crocins are formed from crocetin dialdehyde that is produced in Crocus sativus from zeaxanthin by the carotenoid cleavage dioxygenase 2L (CsCCD2L), while GjCCD4a from Gardenia jasminoides, another major source of crocins, converted different carotenoids, including zeaxanthin, into crocetin dialdehyde in bacterio. To establish a biotechnological platform for sustainable production of crocins, we investigated the enzymatic activity of GjCCD4a, in comparison with CsCCD2L, in citrus callus engineered by Agrobacterium-mediated supertransformation of multi genes and in transiently transformed Nicotiana benthamiana leaves. We demonstrate that co-expression of GjCCD4a with phytoene synthase and ß-carotene hydroxylase genes is an optimal combination for heterologous production of crocetin, crocins and picrocrocin in citrus callus. By profiling apocarotenoids and using in vitro assays, we show that GjCCD4a cleaved ß-carotene, in planta, and produced crocetin dialdehyde via C30 ß-apocarotenoid intermediate. GjCCD4a also cleaved C27 ß-apocarotenoids, providing a new route for C17 -dialdehyde biosynthesis. Callus lines overexpressing GjCCD4a contained higher number of plastoglobuli in chromoplast-like plastids and increased contents in phytoene, C17:0 fatty acid (FA), and C18:1 cis-9 and C22:0 FA esters. GjCCD4a showed a wider substrate specificity and higher efficiency in Nicotiana leaves, leading to the accumulation of up to 1.6 mg/g dry weight crocins. In summary, we established a system for investigating CCD enzymatic activity in planta and an efficient biotechnological platform for crocins production in green and non-green crop tissues/organs.


Assuntos
Crocus , Dioxigenases , Gardenia , Dioxigenases/genética , Zeaxantinas , Carotenoides , Crocus/química , Crocus/genética , Nicotiana/genética
5.
Traffic ; 20(12): 943-960, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31472037

RESUMO

Presence of cytosolic protein aggregates and membrane damage are two common attributes of neurodegenerative diseases. These aggregates delay degradation of non-translocated protein precursors leading to their persistence and accumulation in the cytosol. Here, we find that cells with intracellular protein aggregates (of cytosolic prion protein or huntingtin) destabilize the endoplasmic reticulum (ER) morphology and dynamics when non-translocated protein load is high. This affects trafficking of proteins out from the ER, relative distribution of the rough and smooth ER and three-way junctions that are essential for the structural integrity of the membrane network. The changes in ER membranes may be due to high aggregation tendency of the ER structural proteins-reticulons, and altered distribution of those associated with the three-way ER junctions-Lunapark. Reticulon4 is seen to be enriched in the aggregate fractions in presence of non-translocated protein precursors. This could be mitigated by improving signal sequence efficiencies of the proteins targeted to the ER. These were observed using PrP variants and the seven-pass transmembrane protein (CRFR1) with different signal sequences that led to diverse translocation efficiencies. This identifies a previously unappreciated consequence of cytosolic aggregates on non-translocated precursor proteins-their persistent presence affects ER morphology and dynamics. This may be one of the ways in which cytosolic aggregates can affect endomembranes during neurodegenerative disease.


Assuntos
Retículo Endoplasmático/metabolismo , Agregados Proteicos , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nogo/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo
6.
Nat Mater ; 19(5): 559-565, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32015530

RESUMO

Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core-shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h-1 g-1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux.

7.
J Am Chem Soc ; 142(4): 1715-1720, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31931564

RESUMO

Effective and cell-type-specific delivery of CRISPR/Cas9 gene editing elements remains a challenging open problem. Here we report the development of biomimetic cancer cell coated zeolitic imidazolate frameworks (ZIFs) for targeted and cell-specific delivery of this genome editing machinery. Coating ZIF-8 that is encapsulating CRISPR/Cas9 (CC-ZIF) with a cancer cell membrane resulted in the uniformly covered C3-ZIF(cell membrane type). Incubation of C3-ZIFMCF with MCF-7, HeLa, HDFn, and aTC cell lines showed the highest uptake by MCF-7 cells and negligible uptake by the healthy cells (i.e., HDFn and aTC). As to genome editing, a 3-fold repression in the EGFP expression was observed when MCF-7 were transfected with C3-ZIFMCF compared to 1-fold repression in the EGFP expression when MCF-7 were transfected with C3-ZIFHELA. In vivo testing confirmed the selectivity of C3-ZIFMCF to accumulate in MCF-7 tumor cells. This supports the ability of this biomimetic approach to match the needs of cell-specific targeting, which is unquestionably the most critical step in the future translation of genome editing technologies.


Assuntos
Biomimética , Sistemas CRISPR-Cas , Estruturas Metalorgânicas/química , Animais , Células HeLa , Xenoenxertos , Humanos , Células MCF-7 , Camundongos
8.
Small ; 14(18): e1701885, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28977736

RESUMO

Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m-2 h-1 bar-1 , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

9.
Nat Mater ; 16(5): 532-536, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28218922

RESUMO

Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules.

10.
BMC Genomics ; 17: 158, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26926518

RESUMO

BACKGROUND: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. RESULTS: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. CONCLUSIONS: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.


Assuntos
Microbiota/genética , Poríferos/genética , Poríferos/microbiologia , Animais , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Anotação de Sequência Molecular , Receptores Depuradores/genética , Análise de Sequência de DNA , Simbiose , Transcriptoma
11.
J Microsc ; 263(3): 365-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27018645

RESUMO

Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions.

12.
Microb Ecol ; 70(1): 118-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25501888

RESUMO

Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32%), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18%) and Anaerolinea (7%) along with heterotrophic denitrifiers Rhodocyclacea (9%), Comamonadacea (3%), and Shewanellacea (3%) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.


Assuntos
Compostos de Amônio/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Microbiota , Archaea/ultraestrutura , Bactérias Anaeróbias/ultraestrutura , Sequência de Bases , Fosfatos de Cálcio/química , Microscopia Eletrônica , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Purificação da Água/métodos
13.
J Immunol ; 191(12): 5993-6001, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24227775

RESUMO

Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8(-/-) bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α(+) DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α(+) DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α(+) DCs. We show that, without Irf8, expression of Id2 and Batf3 was not sufficient for directing classical CD8α(+) DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α(+) DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α(+) DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α(+) DC development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Células Dendríticas/citologia , Regulação da Expressão Gênica/imunologia , Proteína 2 Inibidora de Diferenciação/fisiologia , Fatores Reguladores de Interferon/fisiologia , Proteínas Repressoras/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Antígenos CD8/análise , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dendritos/ultraestrutura , Células Dendríticas/química , Células Dendríticas/classificação , Células Dendríticas/ultraestrutura , Células-Tronco Hematopoéticas/citologia , Proteína 2 Inibidora de Diferenciação/biossíntese , Proteína 2 Inibidora de Diferenciação/genética , Fatores Reguladores de Interferon/biossíntese , Fatores Reguladores de Interferon/genética , Interferon-alfa/biossíntese , Interferon-alfa/genética , Subunidade p40 da Interleucina-12/biossíntese , Subunidade p40 da Interleucina-12/genética , Proteínas de Membrana/farmacologia , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Transdução Genética
14.
Proc Natl Acad Sci U S A ; 108(12): 4846-51, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383202

RESUMO

The final stage of cytokinesis is abscission, the cutting of the narrow membrane bridge connecting two daughter cells. The endosomal sorting complex required for transport (ESCRT) machinery is required for cytokinesis, and ESCRT-III has membrane scission activity in vitro, but the role of ESCRTs in abscission has been undefined. Here, we use structured illumination microscopy and time-lapse imaging to dissect the behavior of ESCRTs during abscission. Our data reveal that the ESCRT-I subunit tumor-susceptibility gene 101 (TSG101) and the ESCRT-III subunit charged multivesicular body protein 4b (CHMP4B) are sequentially recruited to the center of the intercellular bridge, forming a series of cortical rings. Late in cytokinesis, however, CHMP4B is acutely recruited to the narrow constriction site where abscission occurs. The ESCRT disassembly factor vacuolar protein sorting 4 (VPS4) follows CHMP4B to this site, and cell separation occurs immediately. That arrival of ESCRT-III and VPS4 correlates both spatially and temporally with the abscission event suggests a direct role for these proteins in cytokinetic membrane abscission.


Assuntos
Citocinese/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Cães , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Humanos , Fatores de Transcrição/genética
15.
Phys Chem Chem Phys ; 15(44): 19134-7, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24121594

RESUMO

By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.

16.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884813

RESUMO

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Malária/parasitologia , Regulação da Expressão Gênica , Plasmodium falciparum/genética
17.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293082

RESUMO

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

18.
PLoS Pathog ; 6(4): e1000869, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20442859

RESUMO

A key function of the Vpu protein of HIV-1 is the targeting of newly-synthesized CD4 for proteasomal degradation. This function has been proposed to occur by a mechanism that is fundamentally distinct from the cellular ER-associated degradation (ERAD) pathway. However, using a combination of genetic, biochemical and morphological methodologies, we find that CD4 degradation induced by Vpu is dependent on a key component of the ERAD machinery, the VCP-UFD1L-NPL4 complex, as well as on SCF(beta-TrCP)-dependent ubiquitination of the CD4 cytosolic tail on lysine and serine/threonine residues. When degradation of CD4 is blocked by either inactivation of the VCP-UFD1L-NPL4 complex or prevention of CD4 ubiquitination, Vpu still retains the bulk of CD4 in the ER mainly through transmembrane domain interactions. Addition of a strong ER export signal from the VSV-G protein overrides this retention. Thus, Vpu exerts two distinct activities in the process of downregulating CD4: ER retention followed by targeting to late stages of ERAD. The multiple levels at which Vpu engages these cellular quality control mechanisms underscore the importance of ensuring profound suppression of CD4 to the life cycle of HIV-1.


Assuntos
Antígenos CD4/metabolismo , Retículo Endoplasmático/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , HIV-1/patogenicidade , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Separação Celular , Regulação para Baixo , Citometria de Fluxo , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Ubiquitinação , Proteína com Valosina
19.
Blood ; 116(9): 1574-84, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20472835

RESUMO

The serum ferritin concentration is a clinical parameter measured widely for the differential diagnosis of anemia. Its levels increase with elevations of tissue iron stores and with inflammation, but studies on cellular sources of serum ferritin as well as its subunit composition, degree of iron loading and glycosylation have given rise to conflicting results. To gain further understanding of serum ferritin, we have used traditional and modern methodologies to characterize mouse serum ferritin. We find that both splenic macrophages and proximal tubule cells of the kidney are possible cellular sources for serum ferritin and that serum ferritin is secreted by cells rather than being the product of a cytosolic leak from damaged cells. Mouse serum ferritin is composed mostly of L-subunits, whereas it contains few H-subunits and iron content is low. L-subunits of serum ferritin are frequently truncated at the C-terminus, giving rise to a characteristic 17-kD band that has been previously observed in lysosomal ferritin. Taken together with the fact that mouse serum ferritin is not detectably glycosylated, we propose that mouse serum ferritin is secreted through the nonclassical lysosomal secretory pathway.


Assuntos
Ferritinas/sangue , Ferro/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Via Secretória , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Glicosilação , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Subunidades Proteicas , Homologia de Sequência de Aminoácidos
20.
PLoS Genet ; 5(4): e1000455, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19381250

RESUMO

In humans, the absence or irreversible loss of hair cells, the sensory mechanoreceptors in the cochlea, accounts for a large majority of acquired and congenital hearing disorders. In the auditory and vestibular neuroepithelia of the inner ear, hair cells are accompanied by another cell type called supporting cells. This second cell population has been described as having stem cell-like properties, allowing efficient hair cell replacement during embryonic and larval/fetal development of all vertebrates. However, mammals lose their regenerative capacity in most inner ear neuroepithelia in postnatal life. Remarkably, reptiles, birds, amphibians, and fish are different in that they can regenerate hair cells throughout their lifespan. The lateral line in amphibians and in fish is an additional sensory organ, which is used to detect water movements and is comprised of neuroepithelial patches, called neuromasts. These are similar in ultra-structure to the inner ear's neuroepithelia and they share the expression of various molecular markers. We examined the regeneration process in hair cells of the lateral line of zebrafish larvae carrying a retroviral integration in a previously uncharacterized gene, phoenix (pho). Phoenix mutant larvae develop normally and display a morphologically intact lateral line. However, after ablation of hair cells with copper or neomycin, their regeneration in pho mutants is severely impaired. We show that proliferation in the supporting cells is strongly decreased after damage to hair cells and correlates with the reduction of newly formed hair cells in the regenerating phoenix mutant neuromasts. The retroviral integration linked to the phenotype is in a novel gene with no known homologs showing high expression in neuromast supporting cells. Whereas its role during early development of the lateral line remains to be addressed, in later larval stages phoenix defines a new class of proteins implicated in hair cell regeneration.


Assuntos
Células Ciliadas Auditivas/fisiologia , Sistema da Linha Lateral/fisiologia , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Células Ciliadas Auditivas/química , Sistema da Linha Lateral/química , Sistema da Linha Lateral/citologia , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA