Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 21(1): 385, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36522727

RESUMO

BACKGROUND: Mass distribution of insecticide-treated nets (ITNs) is the principal malaria vector control strategy adopted by Niger. To better inform on the most appropriate ITN to distribute, the National Malaria Control Programme (NMCP) of Niger and its partners, conducted insecticide resistance monitoring in selected sites across the country. METHODS: The susceptibility of Anopheles gambiae sensu lato (s.l.) to chlorfenapyr and pyrethroid insecticides was investigated in a total of sixteen sites in 2019 and 2020, using 2-5-day-old adults reared from wild collected larvae per site. The susceptibility status, pyrethroid resistance intensity at 5 and 10 times the diagnostic concentrations, and piperonyl butoxide (PBO) synergism with diagnostic concentrations of deltamethrin, permethrin and alpha-cypermethrin were assessed using WHO bioassays. Two doses (100 and 200 µg/bottle) of chlorfenapyr were tested using the CDC bottle assay method. Species composition and allele frequencies for knock-down resistance (kdr-L1014F and L1014S) and acetylcholinesterase (ace-1 G119S) mutations were further characterized using polymerase chain reaction (PCR). RESULTS: High resistance intensity to all pyrethroids tested was observed in all sites except for alpha-cypermethrin in Gaya and Tessaoua and permethrin in Gaya in 2019 recording moderate resistance intensity. Similarly, Balleyara, Keita and Tillabery yielded moderate resistance intensity for alpha-cypermethrin and deltamethrin, and Niamey V low resistance intensity against deltamethrin and permethrin in 2020. Pre-exposure to PBO substantially increased susceptibility with average increases in mortality between 0 and 70% for tested pyrethroids. Susceptibility to chlorfenapyr (100 µg/bottle) was recorded in all sites except in Tessaoua and Magaria where susceptibility was recorded at the dose of 200 µg/bottle. Anopheles coluzzii was the predominant malaria vector species in most of the sites followed by An. gambiae sensu stricto (s.s.) and Anopheles arabiensis. The kdr-L1014S allele, investigated for the first time, was detected in the country. Both kdr-L1014F (frequencies [0.46-0.81]) and L1014S (frequencies [0.41-0.87]) were present in all sites while the ace-1 G119S was between 0.08 and 0.20. CONCLUSION: The data collected will guide the NMCP in making evidence-based decisions to better adapt vector control strategies and insecticide resistance management in Niger, starting with mass distribution of new generation ITNs such as interceptor G2 and PBO ITNs.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Resistência a Inseticidas/genética , Anopheles/genética , Permetrina/farmacologia , Acetilcolinesterase , Níger , Mosquitos Vetores/genética , Malária/prevenção & controle , Piretrinas/farmacologia , Inseticidas/farmacologia , África Ocidental
2.
Pathogens ; 10(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668365

RESUMO

West Nile virus (WNV), belonging to the Flaviviridae family, causes a mosquito-borne disease and shows great genetic diversity, with at least eight different lineages. The Koutango lineage of WNV (WN-KOUTV), mostly associated with ticks and rodents in the wild, is exclusively present in Africa and shows evidence of infection in humans and high virulence in mice. In 2016, in a context of Rift Valley fever (RVF) outbreak in Niger, mosquitoes, biting midges and sandflies were collected for arbovirus isolation using cell culture, immunofluorescence and RT-PCR assays. Whole genome sequencing and in vivo replication studies using mice were later conducted on positive samples. The WN-KOUTV strain was detected in a sandfly pool. The sequence analyses and replication studies confirmed that this strain belonged to the WN-KOUTV lineage and caused 100% mortality of mice. Further studies should be done to assess what genetic traits of WN-KOUTV influence this very high virulence in mice. In addition, given the risk of WN-KOUTV to infect humans, the possibility of multiple vectors as well as birds as reservoirs of WNV, to spread the virus beyond Africa, and the increasing threats of flavivirus infections in the world, it is important to understand the potential of WN-KOUTV to emerge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA