Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lancet Oncol ; 17(8): 1047-1060, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27339115

RESUMO

BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up. METHODS: CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b-T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3-6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923. FINDINGS: Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9-77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0-90·2) in the 74 Gy group, 90·6% (88·5-92·3) in the 60 Gy group, and 85·9% (83·4-88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68-1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99-1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported. INTERPRETATION: Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer. FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.


Assuntos
Neoplasias da Próstata/radioterapia , Hipofracionamento da Dose de Radiação , Radioterapia de Intensidade Modulada/métodos , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Agências Internacionais , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias da Próstata/patologia , Fatores de Risco , Taxa de Sobrevida , Resultado do Tratamento
2.
Appl Sci (Basel) ; 166(1)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38725869

RESUMO

Radiomics involves the extraction of information from medical images that are not visible to the human eye. There is evidence that these features can be used for treatment stratification and outcome prediction. However, there is much discussion about the reproducibility of results between different studies. This paper studies the reproducibility of CT texture features used in radiomics, comparing two feature extraction implementations, namely the MATLAB toolkit and Pyradiomics, when applied to independent datasets of CT scans of patients: (i) the open access RIDER dataset containing a set of repeat CT scans taken 15 min apart for 31 patients (RIDER Scan 1 and Scan 2, respectively) treated for lung cancer; and (ii) the open access HN1 dataset containing 137 patients treated for head and neck cancer. Gross tumor volume (GTV), manually outlined by an experienced observer available on both datasets, was used. The 43 common radiomics features available in MATLAB and Pyradiomics were calculated using two intensity-level quantization methods with and without an intensity threshold. Cases were ranked for each feature for all combinations of quantization parameters, and the Spearman's rank coefficient, rs, calculated. Reproducibility was defined when a highly correlated feature in the RIDER dataset also correlated highly in the HN1 dataset, and vice versa. A total of 29 out of the 43 reported stable features were found to be highly reproducible between MATLAB and Pyradiomics implementations, having a consistently high correlation in rank ordering for RIDER Scan 1 and RIDER Scan 2 (rs > 0.8). 18/43 reported features were common in the RIDER and HN1 datasets, suggesting they may be agnostic to disease site. Useful radiomics features should be selected based on reproducibility. This study identified a set of features that meet this requirement and validated the methodology for evaluating reproducibility between datasets.

3.
Lancet Oncol ; 13(1): 43-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22169269

RESUMO

BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity, implying a therapeutic advantage of hypofractionated treatment. We present a pre-planned preliminary safety analysis of side-effects in stages 1 and 2 of a randomised trial comparing standard and hypofractionated radiotherapy. METHODS: We did a multicentre, randomised study and recruited men with localised prostate cancer between Oct 18, 2002, and Aug 12, 2006, at 11 UK centres. Patients were randomly assigned in a 1:1:1 ratio to receive conventional or hypofractionated high-dose intensity-modulated radiotherapy, and all were given with 3-6 months of neoadjuvant androgen suppression. Computer-generated random permuted blocks were used, with risk of seminal vesicle involvement and radiotherapy-treatment centre as stratification factors. The conventional schedule was 37 fractions of 2 Gy to a total of 74 Gy. The two hypofractionated schedules involved 3 Gy treatments given in either 20 fractions to a total of 60 Gy, or 19 fractions to a total of 57 Gy. The primary endpoint was proportion of patients with grade 2 or worse toxicity at 2 years on the Radiation Therapy Oncology Group (RTOG) scale. The primary analysis included all patients who had received at least one fraction of radiotherapy and completed a 2 year assessment. Treatment allocation was not masked and clinicians were not blinded. Stage 3 of this trial completed the planned recruitment in June, 2011. This study is registered, number ISRCTN97182923. FINDINGS: 153 men recruited to stages 1 and 2 were randomly assigned to receive conventional treatment of 74 Gy, 153 to receive 60 Gy, and 151 to receive 57 Gy. With 50·5 months median follow-up (IQR 43·5-61·3), six (4·3%; 95% CI 1·6-9·2) of 138 men in the 74 Gy group had bowel toxicity of grade 2 or worse on the RTOG scale at 2 years, as did five (3·6%; 1·2-8·3) of 137 men in the 60 Gy group, and two (1·4%; 0·2-5·0) of 143 men in the 57 Gy group. For bladder toxicities, three (2·2%; 0·5-6·2) of 138 men, three (2·2%; 0·5-6·3) of 137, and none (0·0%; 97·5% CI 0·0-2·6) of 143 had scores of grade 2 or worse on the RTOG scale at 2 years. INTERPRETATION: Hypofractionated high-dose radiotherapy seems equally well tolerated as conventionally fractionated treatment at 2 years. FUNDING: Stage 1 was funded by the Academic Radiotherapy Unit, Cancer Research UK programme grant; stage 2 was funded by the Department of Health and Cancer Research UK.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada , Idoso , Idoso de 80 Anos ou mais , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Lesões por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Reino Unido
4.
Clin Transl Radiat Oncol ; 40: 100596, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36910024

RESUMO

Background and purpose: Adaptive radiotherapy (ART) in locally advanced cervical cancer (LACC) has shown promising outcomes. This study investigated the feasibility of cone-beam computed tomography (CBCT)-guided online ART (oART) for the treatment of LACC. Material and methods: The quality of the automated radiotherapy treatment plans and artificial intelligence (AI)-driven contour delineation for LACC on a novel CBCT-guided oART system were assessed. Dosimetric analysis of 200 simulated oART sessions were compared with standard treatment. Feasibility of oART was assessed from the delivery of 132 oART fractions for the first five clinical LACC patients. The simulated and live oART sessions compared a fixed planning target volume (PTV) margin of 1.5 cm around the uterus-cervix clinical target volume (CTV) with an internal target volume-based approach. Workflow timing measurements were recorded. Results: The automatically-generated 12-field intensity-modulated radiotherapy plans were comparable to manually generated plans. The AI-driven organ-at-risk (OAR) contouring was acceptable requiring, on average, 12.3 min to edit, with the bowel performing least well and rated as unacceptable in 16 % of cases. The treated patients demonstrated a mean PTV D98% (+/-SD) of 96.7 (+/- 0.2)% for the adapted plans and 94.9 (+/- 3.7)% for the non-adapted scheduled plans (p<10-5). The D2cc (+/-SD) for the bowel, bladder and rectum were reduced by 0.07 (+/- 0.03)Gy, 0.04 (+/-0.05)Gy and 0.04 (+/-0.03)Gy per fraction respectively with the adapted plan (p <10-5). In the live.setting, the mean oART session (+/-SD) from CBCT acquisition to beam-on was 29 +/- 5 (range 21-44) minutes. Conclusion: CBCT-guided oART was shown to be feasible with dosimetric benefits for patients with LACC. Further work to analyse potential reductions in PTV margins is ongoing.

5.
Cancer Biother Radiopharm ; 18(1): 81-7, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12667311

RESUMO

Patients undergoing targeted radionuclide therapy (TRT) may receive a series of two or more treatment administrations at varying intervals. However, the level of activity administered and the frequency of administration can vary widely from centre to centre for the same therapy. Tumour dosimetry is seldom employed to determine the optimum treatment plan mainly due to the potential inaccuracies of image quantification. In this work 3D dose distributions obtained from repeated therapies have been registered to enable the dose ratios to be determined. These ratios are independent of errors in image quantification and, since the same target volume can be transferred from one distribution to the next, independent of inconsistencies in outlining these volumes. These techniques have initially been applied to ten sets of I-131 mIBG therapy scan data from five patients, each undergoing two therapies. It was found that where a similar level of activity was administered for the second therapy, a similar tumour dose was delivered, and in two cases where a higher level of activity was administered for the second treatment, a correspondingly higher absorbed dose was delivered. This justifies an approach of administering activities based on individual patient kinetics rather than administering standard activities to all patients.


Assuntos
3-Iodobenzilguanidina/uso terapêutico , Radioisótopos do Iodo/administração & dosagem , Neuroblastoma/radioterapia , Dosagem Radioterapêutica , Adolescente , Criança , Pré-Escolar , Humanos , Lactente
6.
Med Dosim ; 38(2): 165-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23265938

RESUMO

Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beam angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm(3)) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V50Gy objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.


Assuntos
Prótese de Quadril , Neoplasias da Próstata/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Metástase Linfática , Masculino , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA