RESUMO
BACKGROUND: Traumatic brain injury (TBI) is a significant risk factor for Alzheimer's disease (AD), and accumulating evidence supports a role for adaptive immune B and T cells in both TBI and AD pathogenesis. We previously identified B cell and major histocompatibility complex class II (MHCII)-associated invariant chain peptide (CLIP)-positive B cell expansion after TBI. We also showed that antagonizing CLIP binding to the antigen presenting groove of MHCII after TBI acutely reduced CLIP + splenic B cells and was neuroprotective. The current study investigated the chronic effects of antagonizing CLIP in the 5xFAD Alzheimer's mouse model, with and without TBI. METHODS: 12-week-old male wild type (WT) and 5xFAD mice were administered either CLIP antagonist peptide (CAP) or vehicle, once at 30 min after either sham or a lateral fluid percussion injury (FPI). Analyses included flow cytometric analysis of immune cells in dural meninges and spleen, histopathological analysis of the brain, magnetic resonance diffusion tensor imaging, cerebrovascular analysis, and assessment of motor and neurobehavioral function over the ensuing 6 months. RESULTS: 9-month-old 5xFAD mice had significantly more CLIP + B cells in the meninges compared to age-matched WT mice. A one-time treatment with CAP significantly reduced this population in 5xFAD mice. Importantly, CAP also improved some of the immune, histopathological, and neurobehavioral impairments in 5xFAD mice over the ensuing six months. Although FPI did not further elevate meningeal CLIP + B cells, it did negate the ability of CAP to reduce meningeal CLIP + B cells in the 5xFAD mice. FPI at 3 months of age exacerbated some aspects of AD pathology in 5xFAD mice, including further reducing hippocampal neurogenesis, increasing plaque deposition in CA3, altering microgliosis, and disrupting the cerebrovascular structure. CAP treatment after injury ameliorated some but not all of these FPI effects.
Assuntos
Antígenos de Diferenciação de Linfócitos B , Linfócitos B , Lesões Encefálicas Traumáticas , Antígenos de Histocompatibilidade Classe II , Camundongos Transgênicos , Animais , Camundongos , Masculino , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos B/efeitos dos fármacos , Meninges/patologia , Meninges/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Modelos Animais de Doenças , Presenilina-1/genética , Camundongos Endogâmicos C57BLRESUMO
Depression and cognitive deficits present at higher rates among people with spinal cord injury (SCI) compared to the general population, yet these SCI comorbidities are poorly addressed. Sex and age appear to play roles in depression incidence, but consensus on the direction of their effects is limited. Systemic and cortical inflammation and disruptions in hippocampal neurogenesis have been identified as potential treatment targets, but a comprehensive understanding of these mechanisms remains elusive. We used a rodent SCI model to interrogate these gaps in knowledge. We examined post-injury depression-like behavior and cognitive deficits, as well as the association between affect, cognition, chronic hippocampal inflammation and hippocampal neurogenesis, in young and middle-aged male and female Sprague-Dawley rats. Depression-like behavior manifested in male and female subsets of SCI rats irrespective of age, at rates commensurate with the incidence of clinical depression. Changes in components of behavior were driven by sex and age, and affective outcomes were independent of common post-injury pathophysiological outcomes including locomotor functional deficits and spinal lesion severity. Interestingly, however, only male depression-like SCI rats exhibited deficits in hippocampal-associated spatial cognition. Neurogenesis was also disrupted in only SCI males in regions of the hippocampus responsible for affective outcomes. Decreased neurogenesis among middle-aged male subjects coincided with increases in numbers of the pro-inflammatory markers CD86 and iNOS, while middle-aged females had increased numbers of cells expressing Iba-1 and anti-inflammatory marker CD206. Overall, the present data suggest that post-SCI depression and cognition may be affected, in part, by sex- and age-dependent changes in hippocampal neurogenesis and inflammation. Hippocampal neurogenesis is a potential target to address psychological wellbeing after SCI, but therapeutic strategies must carefully consider sex and age as biological variables.
RESUMO
Rodent models of stroke and neural injury are reliable and useful tools for testing new interventions and therapeutics. In addition to physical (motor) impairment, cognitive deficits and depressive behaviors are often observed due to neurotrauma. Proper experimental design of pre- and post-assessments of these behaviors that reduce or minimize the confounding effects of motor impairment are essential for determining markers of progression of impairment or recovery. This chapter provides step-by-step laboratory protocols for assessing cognition using the Barnes maze and the novel object recognition test (NORT) and depressive-like behaviors using the sucrose preference test, the three-chambered sociability approach test, and the burrowing test.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Animais , Depressão/diagnóstico , Depressão/etiologia , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Acidente Vascular Cerebral/complicações , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Modelos Animais de DoençasRESUMO
The bed nucleus of the stria terminalis (BNST) is a forebrain region implicated in aversive responses to uncertain threat. Much of the work on the role of BNST in defensive behavior has used Pavlovian paradigms in which the subject reacts to aversive stimuli delivered in a pattern determined entirely by the experimenter. Here, we explore the contribution of BNST to a task in which subjects learn a proactive response that prevents the delivery of an aversive outcome. To this end, male and female rats were trained to shuttle during a tone to avoid shock in a standard two-way signaled active avoidance paradigm. Chemogenetic inhibition (hM4Di) of BNST attenuated the expression of the avoidance response in male but not female rats. Inactivation of the neighboring medial septum in males produced no effect on avoidance, demonstrating that our effect was specific to BNST. A follow up study comparing hM4Di inhibition to hM3Dq activation of BNST in males replicated the effect of inhibition and demonstrated that activation of BNST extended the period of tone-evoked shuttling. These data support the novel conclusion that BNST mediates two-way avoidance behavior in male rats and suggest the intriguing possibility that the systems underlying proactive defensive behavior are sex-specific.
Assuntos
Núcleos Septais , Feminino , Ratos , Masculino , Animais , Seguimentos , Aprendizagem da EsquivaRESUMO
Disruption of synaptic function is believed to represent a common pathway contributing to cognitive decline during aging. Optogenetics is a prodigious tool for studying relationships between function and synaptic circuitry but models utilizing viral vectors present limitations. Careful characterization of the functionality of channel rhodopsin in transgenic models is crucial for determining whether they can be used across aging. This includes verifying the light sensitivity of the protein and confirming its ability to generate action potentials in response to light stimulation. We combined in vitro optogenetic methodology and a reduced synaptic preparation of acutely isolated neurons to determine if the ChR2(H134R)-eYFP vGAT mouse model is well-suited for aging studies. We used neurons from young (2-6 mo), middle-aged (10-14 mo) and aged (17-25 mo) bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R in GABAergic cell populations. Cellular physiology and calcium dynamics were assessed in basal forebrain (BF) neurons using patch-clamp recording and fura-2 microfluorimetry, alongside 470 nm light stimulation of the transgenic ChR2 channel to characterize a wide array of physiological functions known to decline with age. We found ChR2 expression is functionally maintained across aging, while spontaneous and optically evoked inhibitory postsynaptic currents, and quantal content were decreased. Aged mice also showed an increase in intracellular calcium buffering. These results, which are on par with previous observations, demonstrate that the optogenetic vGAT BAC mouse model is well-suited for investigating age-related changes in calcium signaling and synaptic transmission.
Assuntos
Optogenética , Rodopsina , Camundongos , Animais , Rodopsina/genética , Rodopsina/metabolismo , Optogenética/métodos , Cálcio/metabolismo , Transmissão Sináptica , Camundongos Transgênicos , Envelhecimento , Homeostase , Channelrhodopsins/genética , Channelrhodopsins/metabolismoRESUMO
Preclinical quantitative models of cognitive performance are necessary for translation from basic research to clinical studies. In rodents, non-cognitive factors are a potential influence on testing outcome and high variability in behavior requires multiple time point testing for better assessment of performance in more sophisticated tests. Thus, these models have limited translational value as most human cognitive tests characterize cognition using single digit scales to distinguish between impaired and unimpaired function. To address these limitations, we developed a cognitive index for learning based on previously described scores for strategies used by mice to escape the Barnes maze. We compared the cognitive index and circadian patterns of light-dark entrainment in young (4-6 months), middle-aged (13-14 months), and aged (18-24 months) mice as cognitive changes during aging are often accompanied by pronounced changes in sleep-wake cycle. Following continuous analysis of circadian wheel-running activity (30-40 days), the same cohorts of mice were tested in the Barnes maze. Aged mice showed significant deficits in the learning and memory portions of the Barnes maze relative to young and middle-aged animals, and the cognitive index was positively correlated to the memory portion of the task (probe) in all groups. Significant age-related alterations in circadian entrainment of the activity rhythm were observed in the middle-aged and aged cohorts. In middle-aged mice, the delayed phase angle of entrainment and increased variability in the daily onsets of activity preceded learning and memory deficits observed in aged animals. Interestingly, learning-impaired mice were distinguished by a positive relationship between the extent of Barnes-related cognitive impairment and variability in daily onsets of circadian activity. While it is unclear whether changes in the sleep-wake cycle or other circadian rhythms play a role in cognitive impairment during aging, our results suggest that circadian rhythm perturbations or misalignment may nevertheless provide an early predictor of age-related cognitive decline.