Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770704

RESUMO

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Dióxido de Silício , Dióxido de Silício/química , Cerâmica/química , Fatores de Tempo , Cimentos de Resina/química , Desenho Assistido por Computador , Propriedades de Superfície , Análise do Estresse Dentário , Cimentação/métodos , Porcelana Dentária/química , Humanos , Resinas Compostas/química , Cimentos Dentários/química , Compostos de Potássio/química , Silicatos de Alumínio/química , Temperatura
2.
J Dent ; 147: 105089, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772449

RESUMO

OBJECTIVE: The purpose of this systematic review and meta-analysis was to evaluate the accuracy (trueness and precision), marginal and internal adaptation, and margin quality of zirconia crowns made by additive manufacturing compared to subtractive manufacturing technology. METHODS: The investigation adhered to the PRISMA-ScR guidelines for systematic reviews and was registered at the Prospero database (n°CRD42023452927). Four electronic databases, including PubMed, Scopus, Embase, and Web of Science and manual search was conducted to find relevant studies published until September 2023. In vitro studies that assessed the trueness and precision, marginal and internal adaptation, and margin quality of printed crowns compared to milled ones were included. Studies on crowns over implants, pontics, temporary restorations, laminates, or exclusively experimental materials were excluded. RESULTS: A total of 9 studies were included in the descriptive reporting and 7 for meta-analysis. The global meta-analysis of the trueness (P<0.74,I2=90 %) and the margin quality (P<0.61,I2=0 %) indicated no significant difference between the root mean square of printed and milled zirconia crowns. The subgroup analysis for the printing system showed a significant effect (P<0.01). The meta-analysis of the crown areas indicated no significant difference in most of the areas, except for the marginal (favoring milled crowns) and axial (favoring printed crowns) areas. For precision and adaptation, both methods showed a clinically acceptable level. CONCLUSIONS: Additive manufacturing technology produces crowns with trueness and margin quality comparable to subtractive manufacturing. Both techniques have demonstrated the ability to produce crowns with precision levels, internal discrepancy, and marginal fit within clinically acceptable limits. CLINICAL SIGNIFICANCE: 3D printing emerges as a promising and potentially applicable alternative method for manufacturing zirconia crowns, as it shows trueness and margin quality comparable to restorations produced by the subtractive method.

3.
Int J Prosthodont ; 0(0)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824123

RESUMO

PURPOSE: To investigate the effect of recycling of lithium disilicate (LD), surface treatment and thermocycling (TC) on the bond strength (SBS) to resin cement. MATERIALS AND METHODS: Blocks of LD were made according to the recycling cycle, with 24 blocks for each strategy: Control-conventional sintering; 1R (1 recycling cycle) and 3R (3 recycling cycles). For the recycling groups, blocks were waxed (10x10x3mm), mounted in a silicone ring, poured with investment material, and then residues of sintered LD blocks were pressed by the lost wax technique. The residual LD was reused as described until reach 3R. Afterwards, the blocks were embedded in acrylic resin, sanded and divided (n=15) according to the factors "surface treatment" (HF20s+Silane and HF120s+Silane and Monobond Etch&Prime- MEP) and TC (with/10.000 cycles and without). After surface treatment, cylinders (Ø:2mm) of resin cement were made and submitted to SBS test (100KgF,1mm/min). Data (MPa) were analyzed by 3-way ANOVA, Tukey's test (5%) and Weibull analysis. Failure analysis was performed with stereomicroscope. RESULTS: ANOVA revealed that all factors were significant (P=.000*). The group 3RMEP(105.09±19.49) presented the highest SBS among the experimental groups. 1RHF20sTc(7.50±1.97) group had the lowest SBS, similar to the CHF20sTc(15.69±3.77), 1RHF20s(15.12±3.03), 1RHF120sTc(14.60±3.43) and 3RHF20sTc(15.65±0.97). The Weibull modulus and characteristic strength varied among the experimental groups (P=0.0). Failure analysis revealed adhesive and mixed types. CONCLUSION: The recycling of DL ceramics increases the SBS to resin cement when the ceramic is treated with HF120s+S or MEP.

4.
J Mech Behav Biomed Mater ; 131: 105257, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512485

RESUMO

OBJECTIVES: To evaluate the biaxial flexural strength (BFS), surface roughness (Ra) and micro tensile bond strength (µTBS) of two CAD/CAM materials after different surface treatments. MATERIALS AND METHODS: For µTBS, 64 human molars were used and 32 blocks of resin composite (RC-Lava Ultimate) and polymer-infiltrated ceramic (PIC -Vita Enamic). The blocks and teeth were distributed into 16 groups according to the factors "surface treatment" (HF: 10% hydrofluoric acid; APA: Al2O3 sandblasting; SC: silicate-Al2O3 sandblasting; MEP: Monobond Etch and Prime) and "thermal cycling" (TC). After cementation, the blocks were sectioned into 1 mm2 bars. Half of the specimens were thermocycled and submitted to µTBS test. For BFS, RC and PIC discs were made and distributed according to the surface treatments and after mechanical cycling, submitted to BFS test. Roughness, EDS, SEM, and Weibull analyses were also performed. Data were analyzed by (1 or 2-way) ANOVA and Tukey test (α = 0.05). RESULTS: For RC, SC and HF after TC showed significantly higher µTBS values. For PIC HF after TC showed higher µTBS than the other groups. For RC, the BFS was higher for MEP than Al2O3 and SC. For PIC, none of the surface treatments influenced BFS. CONCLUSION: The highest µTBS for RC was obtained with SC followed by silanization and for PIC, HF followed by silanization. The RC showed lower strength after Al2O3 blasting. For PIC all surface treatments resulted in similar BFS.


Assuntos
Colagem Dentária , Resistência à Flexão , Cerâmica/química , Resinas Compostas/química , Desenho Assistido por Computador , Dentina , Humanos , Teste de Materiais , Polímeros , Cimentos de Resina/química , Propriedades de Superfície , Resistência à Tração
5.
J Adhes Dent ; 24(1): 175-186, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416445

RESUMO

PURPOSE: To identify the most effective cleaning method for saliva-contaminated zirconia surface before adhesive cementation through a systematic review and meta-analysis. MATERIALS AND METHODS: PubMed, Scopus, and Web of Science databases were searched to select in vitro studies published through October 2021. Studies that did not perform aging methods, had a sample size less than 5 per group, or did not present a group with zirconia contaminated only with saliva were excluded. Data were extracted and risk of bias was assessed. Statistical analysis comparing the cleaning methods was conducted, and the standardized mean difference was assessed using the R software program. RESULTS: Among 804 potentially eligible studies, 36 were selected for full-text reading, of which 13 were included in qualitative analysis, and 11 of these were subsequently included in the quantitative analysis. A meta-analysis revealed a significant difference in the bond strength between the cleaning methods. Sandblasting with Al2O3  showed a higher bond strength than cleaning solution (Ivoclean, Ivoclar Vivadent) (p < 0.01, I2 = 65%), and both methods promoted higher resin-bond strength to zirconia than water cleaning. In addition, there was no significant difference in the bond strength between alcohol (p = 0.35, I2 = 79%), phosphoric acid (p < 0.23, I2 = 90%), and water cleaning. CONCLUSION: Sandblasting with Al2O3 seems to be the best method for zirconia surface cleaning before adhesive luting, promoting better resin-bond strength to zirconia.


Assuntos
Colagem Dentária , Cimentos de Resina , Óxido de Alumínio , Colagem Dentária/métodos , Cimentos Dentários , Análise do Estresse Dentário , Cimentos de Ionômeros de Vidro , Teste de Materiais , Saliva , Propriedades de Superfície , Água , Zircônio/química
6.
J Adhes Dent ; 24(1): 279-289, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980237

RESUMO

PURPOSE: To evaluate the effect of two surface conditioning methods, namely conventional hydrofluoric acid vs self-etching primer, and the application of adhesive on the bond strength of resin cement to CAD/CAM glass-ceramics. MATERIALS AND METHODS: Blocks (N = 96) (12 x 10 x 2.5 mm) were manufactured, 24 for each tested ceramic type: lithium silicate ceramic (LS), polymer-infiltrated ceramic (PIC), leucite-reinforced feldspathic ceramic (FD), and lithium-disilicate glass-ceramic (LD). For bond strength testing, 64 blocks were randomly divided into 16 groups (4 blocks per group) according to the following factors: ceramic: 4 levels; etching: 2 levels (HFS: hydrofluoric acid + silane or Monobond Etch & Prime [MEP]); and adhesive application: 2 levels, with (signified as A) and without. Then for each group, 15 resin cement cylinders (AllCem Dual, FGM) were built up. All specimens were subjected to thermocycling (10,000 cycles) and to shear bonding strength testing (SBS) (100 kgf, 0.5 mm/min). Mean shear stresses (MPa) were statistically analyzed by three-way ANOVA, Tukey's test, and Weibull analysis. RESULTS: The mean bond strength of group PIC-HFS-A (28.45 ± 7.6 MPa) was significantly higher than that of groups LS-HFS-A (12.11 ± 2.7MPa) and FDHFSA (20.86 ± 2.0MPa). Group PIC-HFS bond strength (25.02 ± 6.5 MPa) was significantly higher only when compared to group LS-HFS (15.82 ± 4.4 MPa). The LS group presented lower SBS compared to all other groups. No significant differences were found between HFS and MEP surface treatments. CONCLUSION: Surface treatment with MEP promotes adhesion similar to that of HFS. Additional application of adhesive after the surface treatments did not improve the bond strength.


Assuntos
Colagem Dentária , Cimentos de Resina , Cerâmica/química , Cimentos Dentários , Porcelana Dentária/química , Ácido Fluorídrico/química , Lítio , Teste de Materiais , Silanos , Propriedades de Superfície
7.
Dent Mater ; 37(3): e151-e161, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298316

RESUMO

OBJECTIVE: To investigate the influence of different surface treatments on biaxial flexure strength, roughness, and surface topography of lithium silicate/disilicate-based ceramics. METHODS: 225 discs (∅: 12 mm; 1.2 mm - ISO 6872) were made from three ceramics: IPS e.max CAD (LD - Ivoclar Vivadent), Suprinity (LSS - Vita) and Celtra Duo (LSC - Dentsply). The samples were randomly divided into 5 groups (n = 15): no treatment (C); 10% hydrofluoric acid + silane (HF); sandblasting Al2O3 + silane (SB); silicatization + silane (SC); and self-etching ceramic primer (SEP). After surface treatment, a resin cement layer was applied to the disc surface (RelyX U200, 3M ESPE), mechanical cycled (1.2 × 106 cycles, 50 N, 3.8 Hz) and submitted to biaxial flexural strength test (1 mm/min, 1000 Kgf). Roughness, EDS and SEM were also performed. Data were analyzed by one-way ANOVA, Tukey test (5%) and Weibull. RESULTS: ANOVA revealed that the "surface treatment" factor was significant for all ceramics (p < 0.05). The groups LD-HF (289.30 ± 40) LD-SEP (298. 87 ± 53.29), LSC-HF (195.51 ± 42.12), LSS-HF (269.58 ± 27.07) and LSS-SEP (207.45 ± 28.63) presented significantly higher biaxial flexure strength than respective control groups, except for the LSC-SEP (165.41 ± 33.86), which was statistically similar to the control. The Weibull modulus was significantly higher for the LD-SB, LSC-SC groups. Additionally, the LD-SB, LSC-SC and LSS-HF groups showed higher roughness compared to the other treatments. SIGNIFICANCE: HF etching followed by silanization and self-etching ceramic primer are the most suitable surface treatments for lithium silicate/disilicate-based glass-ceramics.


Assuntos
Colagem Dentária , Resistência à Flexão , Cerâmica , Porcelana Dentária , Teste de Materiais , Cimentos de Resina , Dióxido de Silício , Propriedades de Superfície
8.
J Appl Oral Sci ; 28: e20200122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263669

RESUMO

METHODOLOGY: This paper aims to evaluate the effect of different surface treatments on surface topography, wettability, and shear bond strength of resin cement to glass ceramic. For SBS test, 32 blocks (7x7x2 mm) of lithium disilicate were obtained and randomly divided into eight groups (four blocks per group) according to each surface treatment (HF 20 s, 60 s, 120 s + silanization/S or Scotch Bond Universal/ SBU) and the Monobond Etch & Prime - MEP application followed or not by SBU. On each treated surface ceramic block, up to four dual-curing resin cement cylinders were prepared and light-cured for 40s (N=120/n=15). The specimens were thermocycled (10,000 cycles, 5-55°C, 30 s) and the SBS test (50KgF, 0.5 mm/min) was performed. Furthermore, failure analysis, wettability, AFM, and SEM were carried out. SBS data (MPa) were analyzed using Student's t-test, two-way ANOVA, Tukey's test (5%) and Weibull's analysis. RESULTS: For HF experimental groups, two-way ANOVA presented the factors "etching time" and "bonding agent" as significant (p<0.05). After silane application, the HF groups presented similar bond strength. SBU application compromised the SBS, except for 120s etching time (HF120sS: 23.39ᵃ±6.48 MPa; HF120sSBU: 18.76ᵃ±8.81MPa). For MEP groups, SBU application did not significantly affect the results (p=0.41). The MEP group presented the highest Weibull modulus (4.08A) and they were statistically different exclusively from the HF20sSBU (0.58B). CONCLUSION: The HF 20s, 60s, 120 s followed by silane, promoted similar resin-bond strength to ceramic and the SBU application after HF or MEP did not increase the SBS.


Assuntos
Cerâmica , Colagem Dentária , Porcelana Dentária , Molhabilidade , Cimentos Dentários , Teste de Materiais , Cimentos de Resina , Silanos , Propriedades de Superfície
9.
Braz Oral Res ; 34: e018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32187304

RESUMO

The objective of this study was to evaluate the influence of hydrofluoric acid (HF) concentration, etching time, and application of phosphoric acid (PA) followed by neutralization with sodium bicarbonate on the bond strength between a feldspar ceramic and resin cement. Thus, 80 blocks (10 x 12 x 2 mm) of glass ceramic (VM - Vita Mark II - Vita Zahnfabrik) were made and randomly assigned to eight groups (n = 10) according to the factors: HF concentration (5 and 10%), etching time (60 and 120 s), and use of phosphoric acid (PA) (with and without). According to the experimental group, 37% PA (Condac, FGM) was applied after HF etching for 60s. Afterwards, samples were immersed in sodium bicarbonate for 1 min then in an ultrasonic bath in distilled water (5 min) for cleaning. After surface bonding treatment, cylinders (Ø = 2 mm; h = 2 mm) of dual resin cement (AllCem / FGM) were made in the center of each block. The samples were then stored in water (37ºC) for 90 days and submitted to the shear bond test (50 KgF, 1 mm/min). Failure analysis was performed by stereomicroscope and scanning electron microscopy. Data (MPa) were analyzed with 3-way ANOVA and Tukey's test. Only the factor "HF concentration" was significant (p = 0.02). Most failures were of cohesive in ceramic (40%) and mixed types (42.5%). The 10% HF resulted in higher shear bond strength value than the 5% HF. Surface cleaning with phosphoric acid followed by sodium bicarbonate and HF time (60 or 120 seconds) did not influence the resin bond strength to feldspar ceramic.


Assuntos
Silicatos de Alumínio/química , Colagem Dentária/métodos , Ácido Fluorídrico/química , Ácidos Fosfóricos/química , Compostos de Potássio/química , Análise de Variância , Porcelana Dentária/química , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Valores de Referência , Reprodutibilidade dos Testes , Cimentos de Resina/química , Resistência ao Cisalhamento/efeitos dos fármacos , Silanos/química , Propriedades de Superfície , Fatores de Tempo
10.
Oral Health Prev Dent ; 18(1): 153-159, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238987

RESUMO

PURPOSE: The air-particle-abrasion on zirconia in the gingival area of connectors and pontics in fixed partial dentures appears to increase fracture resistance. This study evaluated 'in situ' biofilm formation on the zirconia surface after different air-particle-abrasion protocols. MATERIALS AND METHODS: Ninety sintered blocks (5 × 5 × 2 mm) of yttrium partially stabilised zirconia (Y-TZP) were obtained and randomised among nine groups according to the factors 'type of particle' (Alumina 50 and 110 µm; Cojet and Rocatec) and 'pressure' (2.5 and 3.5 bar) used for sandblasting for 10 s. The surface roughness (Ra/Rz) was measured before and after sandblasting. For the in-situ analyses, custom-made removable intraoral devices n = 10 with one sample of each group attached to the buccal area were used by volunteers for 8 h at night. The specimens were analysed under confocal microscopy to quantify both biovolume and thickness of the initial biofilm formed. One-way analysis of variance (ANOVA) and Dunnett's tests were performed (5%). RESULTS: The roughness values ranged from 0.05 to 0.39 µm for Ra and from 0.35 to 2.11 µm for Rz, p = 0.00. Mean biofilm thickness ranged from 0.06 and 0.54 µm (p = 0.005), while the biovolume values were between 0.02 and 0.61 µm3/µm2 (p = 0.002). Values statistically significant for biofilm thickness and biovolume were found in groups sandblasted with Rocatec using 3.5 bar. CONCLUSION: In order to increase the fracture resistance of zirconia fixed partial dentures (FPDs), the air particle abrasion of zirconia with SiO2 (110 µm/3.5 bar), in the gingival area of connectors and pontics, should be avoided.


Assuntos
Colagem Dentária , Dióxido de Silício , Biofilmes , Materiais Dentários , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Zircônio
11.
Braz Dent J ; 31(3): 272-280, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32667522

RESUMO

The purpose of this study was to evaluate the influence of the application mode of three universal adhesive systems on interfacial physical properties of indirect composite restorations adhesively cemented to dentin cavities. Seventy-eight bovine lower incisors were selected and a slice of dentin (thickness: 2 mm) between the buccal surface and pulp chamber was obtained for each tooth. Conical cavities were made on this surface. The internal walls of the cavities were then coated with a hydrophilic gel, filled with composite resin and photopolymerized. The dentin/cone sets were divided into 6 groups (n=10) according to type of universal adhesive (TETRI: Tetric N Bond, FUT: Futura Bond U, SBU: Single Bond Universal) and acid etching on dentin (A: with acid etching; WA: without acid etching). The acid etching and the adhesive systems were applied to the surface of the dentin. All composite resin cones were sandblasted (Al2O3, 20 s) and silanized. After surface treatment, the cones were cemented (RelyX Ultimate) into the dentin cavity and photopolymerized. After thermocycling (10,000 cycles), samples were submitted to marginal adaptation analysis (using caries detector dye), push-out test (0.5 mm/min), and failure mode analysis. Additional samples were prepared for nanoleakage analysis (SEM). The data (MPa) were analyzed by two-way ANOVA and Tukey's post-test (5%). The groups in which the dentin was acid etched showed significantly lower bond strength values in the push-out test (p<0.01). Dentin acid etching significantly reduced the bond strength between universal adhesive systems and dentin in indirect restorative procedures.


Assuntos
Colagem Dentária , Adesivos Dentinários , Animais , Bovinos , Resinas Compostas , Cimentos Dentários , Cavidade Pulpar , Dentina , Teste de Materiais , Cimentos de Resina , Propriedades de Superfície , Resistência à Tração
12.
J Appl Oral Sci ; 28: e20200438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997088

RESUMO

OBJECTIVE: Glaze application on monolithic zirconia (Y-TZP) can be a practical approach to improve the mechanical properties of this material. Our study evaluated the effect of glazing side and mechanical cycling on the biaxial flexure strength (BFS) of a Y-TZP. METHODOLOGY: Eighty sintered Y-TZP discs (Ø:12 mm; thickness: 1.2 mm - ISO 6872) were produced and randomly assigned into eight groups (n=10), according to the factors "glazing side" (control - no glazing; GT - glaze on tensile side; GC - glaze on compression side; GTC - glaze on both sides) and "mechanical aging" (non-aged and aged, A - mechanical cycling: 1.2×106, 84 N, 3 Hz, under water at 37°C). Specimens were subjected to BFS test (1 mm/min; 1,000 Kgf load cell) and fractured surfaces were analyzed by stereomicroscopy and SEM. Hsueh's rigorous solutions were used to estimate the stress at failure of glazed specimens. Two-way ANOVA, Tukey's test (5%), and Weibull analysis were performed. RESULTS: The "glazing side", "mechanical aging" and the interaction of the factors were significant (p<0.05). Groups GC (1157.9±146.9 MPa), GT (1156.1±195.3 MPa), GTC (986.0±187.4 MPa) and GTC-A (1131.9±128.9 MPa) presented higher BFS than control groups (Tukey, 5%). Hsueh's rigorous solutions showed that the maximum tensile stress was presented in the bottom of zirconia layer, at the zirconia/glaze interface. Weibull characteristic strength (σo) of the GC was higher than all groups (p<0.05), except to GT, GTC-A and GTC, which were similar among them. The fractography showed initiation of failures from zirconia the tensile side regardless of the side of glaze application and fatigue. CONCLUSION: Glazing zirconia applied on both tensile and compression sides improves the flexural strength of Y-TZP, regardless the mechanical aging.


Assuntos
Porcelana Dentária , Resistência à Flexão , Zircônio , Cerâmica , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Ítrio
13.
Braz Oral Res ; 33: e041, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508723

RESUMO

The objective of this study was to evaluate the effect of the hydrofluoridric acid (HF) concentration and time of acid conditioning on bond strength of three glass ceramics to a resin cement. Thus, fifty blocks (10 mm x 5 mm x 2 mm) of each ceramic (LDCAD: IPS e.max CAD; LCAD: IPS Empress CAD and LDHP: IPS e.max Press) were made and embedded in acrylic resin. The surfaces were polished with sandpaper (#600, 800, 1000, and 1200 grits) and blocks were randomly divided into 15 groups (n = 10) according to the following factors: Concentration of HF (10% and 5%), conditioning time (20 s and 60 s) and ceramic (LDCAD, LDHP, and L). After conditioning, silane (Prosil / FGM) was applied and after 2 min, cylinders (Ø = 2 mm; h = 2 mm) of dual resin cement (AllCem / FGM) were made in the center of each block using a Teflon strip as matrix and light cured for 40 s (1,200 mW/cm2). Then, the samples were thermocycled (10,000 cycles, 5/55°C, 30s) and submitted to the shear bond test (50 KgF, 0.5 mm/min). The data (MPa) were analyzed with 3-way ANOVA and Tukey's test (5%). Failure analysis was performed using a stereomicroscope (20x) and a scanning electron microscope (SEM). ANOVA revealed that the "concentration" factor (p = 0.01) and the interaction "acid concentration X ceramic" (p = 0.009) had a significant effect, however, the "ceramic" (p = 0.897) and "conditioning time" (p = 0.260) factors did not influence the results. The LDHP10%60s (10.98 MPa)aA* group presented significantly higher bond strength than LDHP10%20s (6.57 MPa)bA, LCAD5%20s (6,90 ±3,5)aB and LDHP5%60s (5.66 ± 2,9MPa)aA* groups (Tukey). Failure analysis revealed that 100% of specimens had mixed failure. In conclusion, etching with 5% HF for 20 seconds is recommended for lithium disilicate and leucite-reinforced CAD/CAM ceramics. However, for pressed lithium disilicate ceramic, 10% HF for 60 s showed significantly higher bond strength to resin cement.


Assuntos
Condicionamento Ácido do Dente , Cerâmica/química , Colagem Dentária/métodos , Ácido Fluorídrico/administração & dosagem , Porcelana Dentária/química , Análise do Estresse Dentário , Ácido Fluorídrico/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície , Fatores de Tempo
14.
J Mech Behav Biomed Mater ; 94: 207-212, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30909025

RESUMO

PURPOSE: This study evaluated the effect of different loading pistons, made of various materials and with different elastic moduli acting as antagonist material, on stress distribution and fatigue behavior of a CAD/CAM silica-based ceramic. MATERIALS AND METHODS: Discs of CAD/CAM made silica-based ceramic (N = 60) (VITA MARK II) were divided into six groups (n = 10 per group), according to the test method (M: Monotonic; F: Fatigue) and the antagonist piston material (T: Tungsten; S: Steel; G: Epoxy resin). FT, FS and FG combinations were submitted to mechanical cycling (2 × 106 cycles, 4 Hz, 45 N). The bending stress after fatigue were also valuated using Weibull analysis and the parameters η (eta), ß (beta) and the mean time to failure (MTTF) were calculated. Fractographic analysis and Finite Element Analysis (FEA) were performed. Data were analyzed using ANOVA and Tukey's tests (alpha=0.05). RESULTS: MG presented significantly less bending strength (MPa) (75.6) compared to MT (87.8) and MS (84.4) (p < 0.05). Six specimens from FT (MMTF: 8.3 × 106; ß:0.60; η:5.6 × 106), four from FS (MMTF: 1.9 × 106; ß:1.2; η:2.0 × 106) and one from FG (MMTF: 1.3 × 106; ß:0.48; η:0.64 × 106) survived the fatigue test. The stress peak on the tensile surface of S was similar to that of T and both were less than that of G. The failure origins were on the tensile surface. CONCLUSION: The epoxy resin pistons were able to decrease the bending stress, and life expectancy (faster failure) of a silica-based ceramic compared to tungsten and steel.


Assuntos
Cerâmica/química , Desenho Assistido por Computador , Teste de Materiais , Dióxido de Silício/química , Análise de Elementos Finitos , Propriedades de Superfície , Suporte de Carga
15.
Braz Dent J ; 30(5): 476-483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596332

RESUMO

The aim of this study was to evaluate the bond strength, bottom/top hardness ratio, marginal adaptation, and interfacial nanoleakage of regular viscosity bulk fill composites (RVBFC) and regular viscosity traditional composites (RVTC). Two RVBFC (Filtek Bulk Fill and Aura Bulk Fill) and two RVTC (Filtek Z250XT and Aura) were assessed. Forty conical cavities (4.8×2.8×4.0) were prepared in bovine dentin and restored with composites (n=10). After 24h in water, marginal adaptation was evaluated by staining with a caries detector. The top and bottom surfaces of the conical restorations were stained for five seconds and the gap percentage in the composite/dentin interface was determined using digital images on a measurement program (ImageTool). The Vickers microhardness was measured and the bottom/top microhardness ratio (B/T) was determined. Push-out bond strength test was performed in a universal testing machine (0.5mm/min) and failure modes were evaluated in a stereomicroscope (20×). Other specimens (n=3) were produced for interfacial nanoleakage evaluation. Data were analyzed using one and two-way ANOVA and Tukey's test (α=0.05). The gap percentage was higher in the bottom compared to the top. The B/T ratio of the Aura Bulk Fill was statistically lower than other composites. Push-out bond strength were similar among composites. The RVBFC presented lower nanoleakage than the RVTC in the bottom of the conical restoration and there was no difference among the materials in the top surfaces. In conclusion, Filtek Bulk Fill performed better than Aura Bulk Fill regarding the analyzed properties.


Assuntos
Resinas Compostas , Cárie Dentária , Animais , Bovinos , Dentina , Dureza , Teste de Materiais , Viscosidade
16.
Braz Oral Res ; 32: e106, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30379210

RESUMO

The aim of this study was to determine if multiple processing (heat-pressing) of a dental ceramic influences flexural strength, hardness, and microstructure. Ninety bar-shaped specimens (15 mm × 4 mm × 2 mm) of a pressed ceramic (Vita PM9) were fabricated and randomly divided into 6 groups (n = 15) according to the factors "number of pressings" (C1, C2, and C3, fired 1, 2, and 3 times, respectively) and "mechanical cycling" (M). Half of the specimens were mechanically cycled (106 cycles, 45 N, 3.4 Hz, in water) and all specimens were tested for 3-point bending (0.5 mm/min, load 1000 kgf) and Vickers hardness (19.6 N for 20 s). X-ray diffraction was used to characterize the phases and scanning electron microscopy to characterize the microstructure. The flexural strength data was statistically analyzed with Weibull analysis, ANOVA, and Tukey test. Hardness data was evaluated by 2-way ANOVA and Fisher test. All tests were performed with a significance level of 0.05. Two-way ANOVA revealed that neither "number of pressings" (p=0.085) or "mechanical cycling" (0.055) significantly affected flexural strength. But Weibull analysis showed significant difference for Weibull moduli and characteristic strength between groups. For hardness, a statistical difference was seen for the interaction "Number of pressings * Mechanical cycling", (p = 0.016). Hardness decreased in the following order: C1 (775±17.2), CM3 (751±101), CM2 (735±45), C3 (701±82), CM1 (671±82), and C2 (663±92). Fewer defects were observed with an increased number of firings. Therefore, the possibility of recycling PM9 ceramic does not interfere in the evaluated mechanical properties and improves microstructure.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Temperatura Alta , Análise de Variância , Testes de Dureza , Teste de Materiais , Microscopia Eletrônica de Varredura , Maleabilidade , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
17.
Dent Mater ; 34(9): 1342-1350, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934125

RESUMO

OBJECTIVES: To investigate the influence of different materials for monolithic full posterior crowns using 3D-Finite Element Analysis (FEA). METHODS: Twelve (12) 3D models of adhesively-restored teeth with different crowns according to the material and its elastic modulus were analysed: Acrylic resin, Polyetheretherketone, Composite resin, Hybrid ceramic, pressable and machinable Zirconia reinforced lithium silicate, Feldspathic, Lithium disilicate, Gold alloy, Cobalt-Chromium alloy (Co-Cr), Zirconia tetragonal partially stabilized with yttria, and Alumina. All materials were assumed to behave elastically throughout the entire deformation. Results in restoration and cementing line were obtained using maximum principal stress. In addition, maximum shear stress criteria was used for the cementing line. RESULTS: Restorative materials with higher elastic modulus present higher stress concentration inside the crown, mainly tensile stress on an intaglio surface. On the other hand, materials with lower elastic modulus allow stress passage for cement, increasing shear stress on this layer. Stiffer materials promote higher stress peak values. SIGNIFICANCE: Materials with higher elastic modulus such as Co-Cr, zirconia and alumina enable higher tensile stress concentration on the crown intaglio surface and higher shear stress on the cement layer, facilitating crown debonding.


Assuntos
Desenho Assistido por Computador , Coroas , Materiais Dentários/química , Análise de Elementos Finitos , Benzofenonas , Fenômenos Biomecânicos , Cerâmica/química , Resinas Compostas/química , Ligas Dentárias/química , Análise do Estresse Dentário , Módulo de Elasticidade , Imageamento Tridimensional , Cetonas/química , Polietilenoglicóis/química , Polímeros , Resistência à Tração , Zircônio/química
18.
Braz Oral Res ; 32: e58, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898031

RESUMO

The objective of the present study was to evaluate the effect of different surface treatments and polymerization protocols on the bond strength of brackets to enamel, and the degree of conversion of the bonding agents. 120 bovine crowns were embedded in acrylic resin blocks and sanded. Next, the blocks were randomly assigned into 12 groups. Metal brackets were bonded to enamel according to the "surface treatment" factor (A: Phosphoric Acid; ATxt: Phosphoric Acid + Transbond XT Primer®; Tse: Transbond Plus Self Etching Primer®; and SBU: Scotchbond Universal®) and "polymerization" factor (R20: Radii-Cal®/20 seconds; V20: Valo Cordless®/20 seconds; and V3: Valo Cordless®/3 seconds). All samples were stored for 6 months (water, 37ºC) and then subjected to a shear bond strength test (SBS). Bond failures were classified according to the Adhesive Remnant Index (ARI) and analyzed with the Kruskal-Wallis and Mann-Whitney tests (5%). Using the same factors, 120 resin discs were made to assess the degree of conversion (DC) of the monomer. Data from the SBS (MPa) and DC (%) were analyzed by analysis of variance (2 factors) and Tukey's test (5%). For the SBS, the factors "polymerization" (R20 = 8.1B; V20 = 13.2A; V3 = 5.2C, p = 0.0001) and "surface treatment" (A = 3.1C; ATxt = 13.6A; Tse = 12.3A; SBU = 6.3B, p = 0.0001) were statistically significant among groups. The highest adhesion value were found for the ATxt/V20 group (22.2A) and the lowest value for the A/R20 group (1.2E). Regarding ARI, score 2 was the most prevalent in groups A, ATxt, V20 and V3, while score 4 was the most prevalent in the Tse, SBU and R20 groups, with no significant difference between them (p = 1.0). Regarding DC, the factors "polymerization" (R20 = 66.6A; V20 = 58.4B; V3 = 45.1C, p = 0.0001) and "surface treatment" (A = 52B, ATxt = 59.7A, Tse = 51.4B, SBU = 63.8A, p = 0.0001) were statistically significant. Tse was more sensitive to the variations in polymerization protocols than the other surface treatments. Treatment A did not present suitable bond strength or degree of conversion.


Assuntos
Esmalte Dentário/efeitos dos fármacos , Cura Luminosa de Adesivos Dentários/métodos , Braquetes Ortodônticos , Polimerização/efeitos dos fármacos , Cimentos de Resina/química , Autocura de Resinas Dentárias/métodos , Condicionamento Ácido do Dente/métodos , Adesividade/efeitos dos fármacos , Análise de Variância , Animais , Bovinos , Lâmpadas de Polimerização Dentária , Esmalte Dentário/química , Teste de Materiais , Transição de Fase , Ácidos Fosfóricos/química , Distribuição Aleatória , Valores de Referência , Reprodutibilidade dos Testes , Resistência ao Cisalhamento , Fatores de Tempo
19.
J Mech Behav Biomed Mater ; 72: 14-21, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28432999

RESUMO

The aim of the present study was to evaluate the influence of intra-oral aging on the tetragonal-to-monoclinic (t→m) phase transformation of two Y-TZP dental ceramics - Lava Frame (Frame) and Lava Plus (Plus) - and determine the impact of this response on their microstructures and mechanical properties: flexural strength, Young's modulus, microhardness and fracture toughness. Standardized ceramic specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). After the baseline analysis, the specimens were attached to personalized intra-oral resin appliances and exposed to the oral cavity of 20 subjects for 60 days and then analyzed again. Specimens produced for mechanical properties evaluation were also analyzed before and after the 60-day intra-oral aging. The data were analyzed using two-way ANOVA and Tukey HSD's post hoc test (α=0.05). Weibull analysis was used to evaluate the strength reliability. Both Y-TZP ceramics suffered t→m phase transformation after 60-day intra-oral aging (Plus=4.7%/Frame=7.7%). SEM and AFM analyses showed dislodgement of ZrO2 grains and a significant increase in roughness after intra-oral aging for both ceramics. Both Y-TZP ceramics suffered a decrease on flexural strength, Young's modulus and fracture toughness after intra-oral aging (p<0.05). Only Plus presented a decrease of microhardness after intra-oral aging (p<0.05). Intra-oral aging for 60 days produced t→m phase transformation, changed the microstructure and decreased the mechanical properties of two Y-TZP dental ceramics.


Assuntos
Cerâmica/análise , Materiais Dentários/análise , Ítrio/análise , Zircônio/análise , Divisão Celular , Humanos , Teste de Materiais , Maleabilidade , Reprodutibilidade dos Testes , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo
20.
J Endod ; 43(5): 791-795, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28343925

RESUMO

INTRODUCTION: In order to understand the mechanical behavior of a weakened incisor, this study aimed to evaluate the stress distribution caused by different alveolar bone heights and cement layer thickness. METHODS: A finite element analysis was conducted for this investigation. An intact maxillary central incisor was initially modeled, and the bone of the models was modified in order to simulate 4 levels of bone height: BL0 (no bone loss), BL1 (1/3 bone loss), BL2 (1/2 bone loss), and BL3 (2/3 bone loss). These teeth models were remodeled with a fiber post at 2 different cement thicknesses and restored with a ceramic crown; "A" refers to the well-adapted fiber post (0.3 mm) and "B" to the nonadapted fiber post (1 mm), resulting in 12 models. RelyX ARC (3M ESPE, St Paul, MN) cement was simulated for the cementation of the crowns and fiber posts for all groups. Numeric models received a load of 100 N on the lingual surface. All materials and structures were considered linear elastic, homogeneous, and isotropic. Numeric models were plotted and meshed with isoparametric elements, and results were expressed in maximum principal stress. RESULTS: For fiberglass posts, cement, and dentin, the highest stress concentration occurred in the groups with increased bone loss. For cortical bone, the highest values were for the groups with 1/3 bone loss. A greater thickness of cement layer concentrates more stress. CONCLUSIONS: More bone loss and greater CLT were the influential factors in concentrating the stress.


Assuntos
Perda do Osso Alveolar/cirurgia , Cimentos Dentários/uso terapêutico , Incisivo/cirurgia , Dente não Vital/fisiopatologia , Perda do Osso Alveolar/fisiopatologia , Fenômenos Biomecânicos , Força Compressiva , Cimentos Dentários/efeitos adversos , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Incisivo/fisiopatologia , Maxila , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA