Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(22): 11706-16, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27056329

RESUMO

αIIbß3 activation in platelets is followed by activation of the tyrosine kinase c-Src associated with the carboxyl terminus of the ß3 cytosolic tail. Exogenous peptides designed to interact with the αIIb transmembrane (TM) domain activate single αIIbß3 molecules in platelets by binding to the αIIb TM domain and causing separation of the αIIbß3 TM domain heterodimer. Here we asked whether directly activating single αIIbß3 molecules in platelets using the designed peptide anti-αIIb TM also initiates αIIbß3-mediated outside-in signaling by causing activation of ß3-associated c-Src. Anti-αIIb TM caused activation of ß3-associated c-Src and the kinase Syk, but not the kinase FAK, under conditions that precluded extracellular ligand binding to αIIbß3. c-Src and Syk are activated by trans-autophosphorylation, suggesting that activation of individual αIIbß3 molecules can initiate αIIbß3 clustering in the absence of ligand binding. Consistent with this possibility, incubating platelets with anti-αIIb TM resulted in the redistribution of αIIbß3 from a homogenous ring located at the periphery of discoid platelets into nodular densities consistent with clustered αIIbß3. Thus, these studies indicate that not only is resting αIIbß3 poised to undergo a conformational change that exposes its ligand-binding site, but it is poised to rapidly assemble into intracellular signal-generating complexes as well.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Quinase Syk/metabolismo , Quinases da Família src/metabolismo , Proteína Tirosina Quinase CSK , Humanos , Immunoblotting , Imunoprecipitação , Fragmentos de Peptídeos/farmacologia , Fosforilação , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química
2.
J Biol Chem ; 290(25): 15825-15834, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25947380

RESUMO

It is currently believed that inactive tyrosine kinase c-Src in platelets binds to the cytoplasmic tail of the ß3 integrin subunit via its SH3 domain. Although a recent NMR study supports this contention, it is likely that such binding would be precluded in inactive c-Src because an auto-inhibitory linker physically occludes the ß3 tail binding site. Accordingly, we have re-examined c-Src binding to ß3 by immunoprecipitation as well as NMR spectroscopy. In unstimulated platelets, we detected little to no interaction between c-Src and ß3. Following platelet activation, however, c-Src was co-immunoprecipitated with ß3 in a time-dependent manner and underwent progressive activation as well. We then measured chemical shift perturbations in the (15)N-labeled SH3 domain induced by the C-terminal ß3 tail peptide NITYRGT and found that the peptide interacted with the SH3 domain RT-loop and surrounding residues. A control peptide whose last three residues where replaced with those of the ß1 cytoplasmic tail induced only small chemical shift perturbations on the opposite face of the SH3 domain. Next, to mimic inactive c-Src, we found that the canonical polyproline peptide RPLPPLP prevented binding of the ß3 peptide to the RT- loop. Under these conditions, the ß3 peptide induced chemical shift perturbations similar to the negative control. We conclude that the primary interaction of c-Src with the ß3 tail occurs in its activated state and at a site that overlaps with PPII binding site in its SH3 domain. Interactions of inactive c-Src with ß3 are weak and insensitive to ß3 tail mutations.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Plaquetas/química , Plaquetas/citologia , Proteína Tirosina Quinase CSK , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Domínios de Homologia de src , Quinases da Família src/química , Quinases da Família src/genética
3.
Proc Natl Acad Sci U S A ; 107(2): 703-8, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080739

RESUMO

Interactions between transmembrane (TM) helices play an important role in the regulation of diverse biological functions. For example, the TM helices of integrins are believed to interact heteromerically in the resting state; disruption of this interaction results in integrin activation and cellular adhesion. However, it has been difficult to demonstrate the specificity and affinity of the interaction between integrin TM helices and to relate them to the activation process. To examine integrin TM helix associations, we developed a bacterial reporter system and used it to define the sequence motif required for helix-helix interactions in the beta (1) and beta (3) integrin subfamilies. The helices interact in a novel three-dimensional motif, the "reciprocating large-small motif" that is also observed in the crystal structures of unrelated proteins. Modest but specific stabilization of helix associations is realized via packing of complementary small and large groups on neighboring helices. Mutations destabilizing this motif activate native, full-length integrins. Thus, this highly conserved dissociable motif plays a vital and widespread role as an on-off switch that can integrate with other control elements during integrin activation.


Assuntos
Cadeias alfa de Integrinas/química , Cadeias beta de Integrinas/química , Sequência de Aminoácidos , Linhagem Celular , Sequência Consenso , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Células Jurkat , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fragmentos de Peptídeos/química , Regiões Promotoras Genéticas , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA