RESUMO
Two strains of bacteria, PsyLou2AT and PsyPon4B, were isolated from adult braconid wasps Psyttalia lounsburyii and Psyttalia ponerophaga, respectively. These laboratory-reared wasps were investigated as agents for biological control of the olive fruit fly, Bactrocera oleae. Analysis of 16S rRNA genes of the two isolates demonstrated that they were highly related and belonged to the genus Serratia. Genomic sequencing of these isolates revealed genomes of 5,152,551 bp and 5,154,385 bp for PsyLou2AT and PsyPon4B, respectively, and both genomes had a mol% G+C content of 59.6%. Phylogenetic analyses using BLAST-based average nucleotide identity (ANIb), and digital DNA-DNA hybridization methods indicated that PsyLou2AT was most closely related to Serratia nevei S15T, producing ANIb and dDDH values of 96.11% and 70.2%, respectively. Since these values were literally on the species cutoff threshold, additional S. nevei genome assemblies were analyzed using ANIb and dDDH calculations. This revealed that among assemblies that were clearly identifiable as S. nevei, S. nevei S15T was the most closely related to PsyLou2AT, and that a majority of assemblies produced dDDH values of 68.3-68.7% relative to PsyLou2AT. Additionally, PsyLou2AT differed biochemically from S. nevei S15T in that it produced positive Voges Proskauer tests, produced protease, lacked arginine dihydrolase, and did not utilize D-lactose. Hence, PsyLou2AT represents a novel taxon within the Serratia, for which we propose the name Serratia montpellierensis sp. nov. The type strain is PsyLou2AT (=LMG 32817T =NRRL B-65689T).
Assuntos
Vespas , Animais , Filogenia , RNA Ribossômico 16S , Endopeptidases , DNARESUMO
Bagrada hilaris (Burmeister) is an invasive pest of economically important crops in the United States. During physiological investigations of B. hilaris, a flagellated protozoan was discovered in the alimentary canal of many specimens. This manuscript characterizes the morphology and molecular identification of the trypanosomatid, which appears similar to trypanosomatids identified in other stink bug species. It has been identified as a species in the Blastocrithidia genus based on morphological characteristics and molecular analyses.
Assuntos
Hemípteros , Trypanosoma , Animais , Hemípteros/parasitologia , Trypanosoma/classificaçãoRESUMO
The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae. Antibiosis of pupal cells against B. bassiana was confirmed in-vitro in three additional curculionids, Diaprepes abbreviatus, Conotrachelus nenuphar, and Pissodes nemorensis, all of which had fewer fungal colonies relative to controls. Pupal soil cells were found to suppress phytopathogenic fungi in-vitro, including suppression of Alternaria solani by D. abbreviatus pupal cell, and that of Monilinia fructicola by C. caryae. The detection of antibiosis of soil cells formed by surface-sterilized insects using sterile soil implies the antimicrobial effect stemmed from inside the insect. Further, a novel biotic mechanism was identified: a bacterium related to Serratia nematodiphila was isolated from C. caryae pupal soil cells and was found to be associated with antibiosis. The bacterial cultures with or without autoclave had similar effects but were not as potent as pupal soil cells for suppressing B. bassiana. Also, autoclaved soil cells and autoclaved bacterial culture suppressed M. fructicola but were not as inhibitory as non-autoclaved soil cells. This indicates that antibiosis may be due to bacterial metabolites, although other factors may also be involved. Our findings suggest potential to develop the antibiotic compounds as novel bio-fungicides to control plant diseases.
Assuntos
Antibiose , Beauveria/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Serratia/fisiologia , Microbiologia do Solo , Gorgulhos/microbiologia , Animais , Fungicidas Industriais/química , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Serratia/química , Especificidade da Espécie , Gorgulhos/crescimento & desenvolvimentoRESUMO
Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.
Assuntos
Alquil e Aril Transferases/metabolismo , Heterópteros/metabolismo , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Animais , Vias Biossintéticas/genética , Heterópteros/enzimologia , Heterópteros/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Modelos Moleculares , Estrutura Molecular , Feromônios/química , Filogenia , Fosfatos de Poli-Isoprenil/metabolismo , Domínios Proteicos , Sesquiterpenos/química , EstereoisomerismoRESUMO
BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.
Assuntos
Heterópteros/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Sequenciamento Completo do Genoma/métodos , Animais , Ecossistema , Transferência Genética Horizontal , Tamanho do Genoma , Heterópteros/classificação , Espécies Introduzidas , FilogeniaRESUMO
Two isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from a small pool in marshland near the mouth of the Nanticoke River in Maryland, USA. The isolates IIBBL 257-1T and IIBBL 257-2 had identical 16S rRNA gene sequences as determined by PCR, and highly similar fatty acid and biochemical profiles. The 16S rRNA gene sequences indicated the isolates belonged to the genus Chromobacterium. Genomic sequencing of IIBBL 257-1T revealed a genome of 4.27 Mb, with a G+C content of 63.6â%. Whole genome comparisons with other members of the Chromobacterium using JSpecies and the genome blast distance phylogeny approach indicated that among described species, IIBBL 257-1T was most closely related to C. amazonense and C. phragmitis. Comparison of the IIBBL 257-1T genome with those of type strains of these species resulted in ANIb and dDDH values of ca. 85 and 30â%, respectively, for both. These results demonstrate that IIBBL 257-1T and IIBBL 257-2 represent a new taxon within the genus Chromobacterium. We propose the name Chromobacterium paludis sp. nov. for this taxon; the type strain is IIBBL 257-1T (=NRRL B-65555T=JCM 33770T).
Assuntos
Chromobacterium/classificação , Filogenia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , Baías , Chromobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Maryland , Pigmentação , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNARESUMO
Thirteen isolates of Gram-stain-negative, motile, violet-pigmented bacteria were isolated from marshes along tidal portions of the Potomac and James rivers in Maryland and Virginia, USA, respectively. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genomic sequencing of two isolates, IIBBL 112-1T and IIBBL 274-1 (from the Potomac and James rivers, respectively), revealed highly similar genomic sequences, with a blast-based average nucleotide identity (ANIb) of ca. 98.7â%. Phylogenetic analysis of 16S rRNA gene sequences suggested that the species most highly related to IIBBL 112-1T were Chromobacterium amazonense, Chromobacterium subtsugae and Chromobacterium sphagni. However, deletion of a 25-nucleotide sequence that may have been horizontally acquired by both IIBBL 112-1T and C. amazonense resulted in a substantially different analysis; in the latter case, the species nearest IIBBL 112-1T were Chromobacterium violaceum, Chromobacterium vaccinii and Chromobacterium piscinae. Whole-genome alignments between either IIBBL 112-1T or IIBBL 274-1 and the type strains of C. vaccinii or C. violaceum resulted in ANIb values in the range of ca. 87â%, while alignment with C. amazonense CBMAI 310T resulted in an ANIb of ca. 83â%. Collectively, these data demonstrate that IIBBL 112-1T and IIBBL 274-1 represent a new taxon within the genus Chromobacterium. We propose the name Chromobacterium phragmitis sp. nov. for this taxon; the type strain is IIBBL 112-1T (=NRRL B-67132T=JCM 31884T).
Assuntos
Chromobacterium/classificação , Estuários , Filogenia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , Chromobacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Maryland , Pigmentação , RNA Ribossômico 16S/genética , Rios , Análise de Sequência de DNA , VirginiaRESUMO
Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from Sphagnum bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1T and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99â%, but did not exceed 88â% when comparing either isolate with genomic sequences of Chromobacterium violaceum ATCC 12472T, C. haemolyticum DSM 19808T, C. piscinae ND17, C. subtsugae PRAA4-1T, C. vaccinii MWU205T or C. amazonense CBMAI 310T. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1T and IIBBL 37-2 were most closely related to C. subtsugae, but represented a distinct species. We propose the name Chromobacterium sphagni sp. nov. for this taxon; the type strain is IIBBL 14B-1T (=NRRL B-67130T=JCM 31882T).
Assuntos
Chromobacterium/classificação , Filogenia , Sphagnopsida/microbiologia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , Chromobacterium/genética , Chromobacterium/isolamento & purificação , DNA Bacteriano/genética , Maine , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , West VirginiaRESUMO
OBJECTIVE: This work was performed in support of a separate study investigating the activity of pesticidal proteins produced by Bacillus thuringiensis against the Asian citrus psyllid, Diaphorina citri. The fourteen Bacillus isolates chosen were selected from a large, geographically diverse collection that was characterized only by biochemical phenotype and morphology of the parasporal crystal, hence, for each isolate it was desired to determine the specific pesticidal proteins produced, assign each to a Bacillus cereus multilocus sequence type (ST), and predict their placement within the classical Bt serotyping system. In addition, phylogenetic distances between the isolates and Bacillus thuringiensis serovar type strains were determined by calculating digital DNA-DNA hybridization (dDDH) values among the isolates. RESULTS: Based on the assembled sequence data, the isolates were found to be likely representatives of the Bt serovars kurstaki (ST 8), pakistani (ST 550), toumanoffi (ST 240), israelensis (ST 16), thuringiensis (ST 10), entomocidus (ST 239), and finitimus (ST 171). In cases where multiple isolates occurred within a predicted serovar, pesticidal protein profiles were found to be identical, despite the geographic diversity of the isolates. As expected, the dDDH values calculated for pairwise comparisons of the isolates and their apparent corresponding Bt serovar type strains were quite high (> 98%), however dDDH comparisons of the isolates with other serovar type strains were often surprisingly low (< 70%) and suggest unrecognized taxa within Bt and the Bacillus cereus sensu lato.
Assuntos
Bacillus thuringiensis , Variação Genética , Genoma Bacteriano , Filogenia , Bacillus thuringiensis/classificação , Bacillus thuringiensis/genética , Hibridização Genômica Comparativa , Genoma Bacteriano/genética , SorogrupoRESUMO
The spongy moth virus Lymantria dispar iflavirus 1 (LdIV1), originally identified from a Lymantria dispar cell line, was detected in 24 RNA samples from female moths of four populations from the USA and China. Genome-length contigs were assembled for each population and compared with the reference genomes of the first reported LdIV1 genome (Ames strain) and two LdIV1 sequences available in GenBank originating from Novosibirsk, the Russian Federation. A whole-genome phylogeny was generated for these sequences, indicating that LdIV1 viruses observed in North American (flightless) and Asian (flighted) spongy moth lineages indeed partition into clades as would be expected per their host's geographic origin and biotype. A comprehensive listing of synonymous and non-synonymous mutations, as well as indels, among the polyprotein coding sequences of these seven LdIV1 variants was compiled and a codon-level phylogram was computed using polyprotein sequences of these, and 50 additional iflaviruses placed LdIV1 in a large clade consisting mostly of iflaviruses from other species of Lepidoptera. Of special note, LdIV1 RNA was present at very high levels in all samples, with LdIV1 reads accounting for a mean average of 36.41% (ranging from 1.84% to 68.75%, with a standard deviation of 20.91) of the total sequenced volume.
RESUMO
Insects use diverse arrays of small molecules such as metabolites of the large class of terpenes for intra- and inter-specific communication and defense. These molecules are synthesized by specialized metabolic pathways; however, the origin of enzymes involved in terpene biosynthesis and their evolution in insect genomes is still poorly understood. We addressed this question by investigating the evolution of isoprenyl diphosphate synthase (IDS)-like genes with terpene synthase (TPS) function in the family of stink bugs (Pentatomidae) within the large order of piercing-sucking Hemipteran insects. Stink bugs include species of global pest status, many of which emit structurally related 15-carbon sesquiterpenes as sex or aggregation pheromones. We provide evidence for the emergence of IDS-type TPS enzymes at the onset of pentatomid evolution over 100 million years ago, coinciding with the evolution of flowering plants. Stink bugs of different geographical origin maintain small IDS-type families with genes of conserved TPS function, which stands in contrast to the diversification of TPS genes in plants. Expanded gene mining and phylogenetic analysis in other hemipteran insects further provides evidence for an ancient emergence of IDS-like genes under presumed selection for terpene-mediated chemical interactions, and this process occurred independently from a similar evolution of IDS-type TPS genes in beetles. Our findings further suggest differences in TPS diversification in insects and plants in conjunction with different modes of gene functionalization in chemical interactions.
Assuntos
Heterópteros , Sesquiterpenos , Animais , Terpenos/metabolismo , Feromônios , Filogenia , Sesquiterpenos/metabolismo , Plantas/genética , Plantas/metabolismoRESUMO
The temporal sequence of microbial establishment in the rumen of the neonatal ruminant has important ecological and pathophysiological implications. In this study, we characterized the rumen microbiota of pre-ruminant calves fed milk replacer using two approaches, pyrosequencing of hypervariable V3-V5 regions of the 16S rRNA gene and whole-genome shotgun approach. Fifteen bacterial phyla were identified in the microbiota of pre-ruminant calves. Bacteroidetes was the predominant phylum in the rumen microbiota of 42-day-old calves, representing 74.8% of the 16S sequences, followed by Firmicutes (12.0%), Proteobacteria (10.4%), Verrucomicrobia (1.2%) and Synergistetes (1.1%). However, the phylum-level composition of 14-day-old calves was distinctly different. A total of 170 bacterial genera were identified while the core microbiome of pre-ruminant calves included 45 genera. Rumen development seemingly had a significant impact on microbial diversity. The dazzling functional diversity of the rumen microbiota was reflected by identification of 8298 Pfam and 3670 COG protein families. The rumen microbiota of pre-ruminant calves displayed a considerable compositional heterogeneity during early development. This is evidenced by a profound difference in rumen microbial composition between the two age groups. However, all functional classes between the two age groups had a remarkably similar assignment, suggesting that rumen microbial communities of pre-ruminant calves maintained a stable function and metabolic potentials while their phylogenetic composition fluctuated greatly. The presence of all major types of rumen microorganisms suggests that the rumen of pre-ruminant calves may not be rudimentary. Our results provide insight into rumen microbiota dynamics and will facilitate efforts in formulating optimal early-weaning strategies.
Assuntos
Bactérias/classificação , Metagenoma , Filogenia , Rúmen/microbiologia , Ração Animal , Animais , Bactérias/genética , Bovinos , DNA Bacteriano/genética , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DesmameRESUMO
The spongy moth Lymantria dispar, formerly known as the gypsy moth, is a forest pest that occurs as two different biotypes: the European spongy moth (ESM), Lymantria dispar dispar, which is distributed in Europe and North America; and the Asian spongy moth (ASM), which consists of subspecies Lymantria dispar asiatica and Lymantria dispar japonica and is distributed in China, Russia, Korea, and Japan. The Asian biotype is classified as a quarantine pest by the U.S. Department of Agriculture because of the superior flight ability of adult females compared to females of the European biotype. To identify genes that potentially account for differences in female flight capability between the two biotypes, we assembled and compared transcriptional profiles of two North American populations of ESM and two Chinese populations of ASM, including samples of unmated female adults and females after mating and oviposition. Of 129,286 unigenes identified, 306 were up-regulated in ASM samples relative to ESM, including genes involved in egg production. In contrast, 2309 unigenes were down-regulated in ASM samples, including genes involved in energy production. Although a previous study found that ASM female flight was reduced after oviposition, a comparison of gene expression before and after mating and oviposition did not reveal any genes which were consistently up- or down-regulated in the two ASM populations.
Assuntos
Mariposas , Animais , Feminino , Estados Unidos , Mariposas/genética , Transcriptoma , China , América do Norte , JapãoRESUMO
The European gypsy moth, Lymantria dispar dispar (LDD), is an invasive insect and a threat to urban trees, forests and forest-related industries in North America. For use as a comparator with a previously published genome based on the LD652 pupal ovary-derived cell line, as well as whole-insect genome sequences obtained from the Asian gypsy moth subspecies L. dispar asiatica and L. dispar japonica, the whole-insect LDD genome was sequenced, assembled and annotated. The resulting assembly was 998 Mb in size, with a contig N50 of 662 Kb and a GC content of 38.8%. Long interspersed nuclear elements constitute 25.4% of the whole-insect genome, and a total of 11,901 genes predicted by automated gene finding encoded proteins exhibiting homology with reference sequences in the NCBI NR and/or UniProtKB databases at the most stringent similarity cutoff level (i.e., the gold tier). These results will be especially useful in developing a better understanding of the biology and population genetics of L. dispar and the genetic features underlying Lepidoptera in general.
Assuntos
Mariposas , Animais , Feminino , Genoma de Inseto , Mariposas/genética , América do Norte , PupaRESUMO
Acalymma vittatum (F.), the striped cucumber beetle, is an important pest of cucurbit crops in the contintental United States, damaging plants through both direct feeding and vectoring of a bacterial wilt pathogen. Besides providing basic biological knowledge, biosequence data for A. vittatum would be useful towards the development of molecular biopesticides to complement existing population control methods. However, no such datasets currently exist. In this study, three biological replicates apiece of male and female adult insects were sequenced and assembled into a set of 630,139 transcripts (of which 232,899 exhibited hits to one or more sequences in NCBI NR). Quantitative analyses identified 2898 genes differentially expressed across the male-female divide, and qualitative analyses characterized the insect's resistome, comprising the glutathione S-transferase, carboxylesterase, and cytochrome P450 monooxygenase families of xenobiotic detoxification genes. In summary, these data provide useful insights into genes associated with sex differentiation and this beetle's innate genetic capacity to develop resistance to synthetic pesticides; furthermore, these genes may serve as useful targets for potential use in molecular-based biocontrol technologies.
RESUMO
Two subspecies of Asian gypsy moth (AGM), Lymantria dispar asiatica and L. dispar japonica, pose a serious alien invasive threat to North American forests. Despite decades of research on the ecology and biology of this pest, limited AGM-specific genomic resources are currently available. Here, we report on the genome sequences and functional content of these AGM subspecies. The genomes of L.d. asiatica and L.d. japonica are the largest lepidopteran genomes sequenced to date, totaling 921 and 999 megabases, respectively. Large genome size in these subspecies is driven by the accumulation of specific classes of repeats. Genome-wide metabolic pathway reconstructions suggest strong genomic signatures of energy-related pathways in both subspecies, dominated by metabolic functions related to thermogenesis. The genome sequences reported here will provide tools for probing the molecular mechanisms underlying phenotypic traits that are thought to enhance AGM invasiveness.
Assuntos
Variação Genética , Genoma de Inseto , Elementos Nucleotídeos Longos e Dispersos , Mariposas/genética , Sequências Repetitivas de Ácido Nucleico , Animais , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Metabolismo Energético , Estudo de Associação Genômica Ampla , Genômica/métodos , Redes e Vias Metabólicas , Mariposas/metabolismo , Especificidade da EspécieRESUMO
BACKGROUND: Translation initiation site (TIS) identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. RESULTS: MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. CONCLUSION: We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.
Assuntos
Códon de Iniciação , Células Eucarióticas/metabolismo , Biossíntese de Proteínas , Software , Algoritmos , Arabidopsis/genética , Sequência de Bases , Teorema de Bayes , Biologia Computacional , Cadeias de Markov , Modelos Estatísticos , Fases de Leitura Aberta , Valor Preditivo dos Testes , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência de DNA/métodosRESUMO
Solenopsis invicta Buren is an invasive ant species that has been introduced to multiple continents. One such area, the southern United States, has a history of multiple control projects using chemical pesticides over varying ranges, often resulting in non-target effects across trophic levels. With the advent of next generation sequencing and RNAi technology, novel investigations and new control methods are possible. A robust genome-guided transcriptome assembly was used to investigate gene expression differences between S. invicta larvae and pupae. These life stages differ in many physiological processes; of special importance is the vital role of S. invicta larvae as the colonies' "communal gut". Differentially expressed transcripts were identified related to many important physiological processes, including digestion, development, cell regulation and hormone signaling. This dataset provides essential developmental knowledge that reveals the dramatic changes in gene expression associated with social insect life stage roles, and can be leveraged using RNAi to develop effective control methods.
RESUMO
The NJAY (New Jersey aster yellows) strain of 'Candidatus Phytoplasma asteris' is a significant plant pathogen responsible for causing severe lettuce yellows in the U.S. state of New Jersey. A draft genome sequence was prepared for this organism. A total of 177,847 reads were assembled into 75 contigs > 518 bp with a total base value of 652,092 and an overall [G+C] content of 27.1%. A total of 733 protein coding genes were identified. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession MAPF00000000. This draft genome was used for genome- and gene-based comparative phylogenetic analyses with other phytoplasmas, including the closely related 'Ca. Phytoplasma asteris' strain, aster yellows witches'- broom (AY-WB). NJAY and AY-WB exhibit approximately 0.5% dissimilarity at the nucleotide level among their shared genomic segments. Evidence indicated that NJAY harbors four plasmids homologous to those known to encode pathogenicity determinants in AY-WB, as well as a chromosome-encoded mobile unit. Apparent NJAY orthologs to the important AY-WB virulence factors, SAP11 and SAP54, were identified. A number of secreted proteins, both membrane-bound and soluble, were encoded, with many bearing similarity to known AY-WB effector molecules and others representing possible secreted proteins that may be novel to the NJAY lineage.
Assuntos
Genoma Bacteriano , Phytoplasma/genética , Cromossomos Bacterianos , New Jersey , Filogenia , Phytoplasma/classificaçãoRESUMO
BACKGROUND: Governments and health care regulators now require hospitals and nursing homes to establish programs to monitor and report antimicrobial consumption and resistance. However, additional resources were not provided. We sought to develop an approach for monitoring antimicrobial resistance and consumption that health care systems can implement with minimal added costs or modifications to existing diagnostic and informatics infrastructure. METHODS: Using (1) the electronic laboratory information system of a nationwide managed care network, (2) the 3 most widely used commercial microbiology diagnostic platforms, and (3) Staphylococcus aureus, one of the most common causes of infections worldwide, as a prototype, we validated the approach dubbed "SAVANT" for Semi-Automated Visualization and ANalysis of Trends. SAVANT leverages 3 analytical methods (time series analysis, the autoregressive integrated moving average, and generalized linear regression) on either commercial or open source software to report trends in antistaphylococcal use and resistance. RESULTS: All laboratory results from January 2010 through December 2015 from an annual average of 9.2 million health care beneficiaries were queried. Inpatient and outpatient prescription rates were calculated for 8 key antistaphylococcal compounds. Trends and relationships of antistaphylococcal consumption and resistance among 81 840 unique S. aureus isolates from >6.5 million cultures were revealed. CONCLUSIONS: Using existing or freely available resources, SAVANT was successfully implemented across a complex and geographically dispersed 280-hospital network, bridging a critical gap between medical informatics, large-scale data analytics, and mandatory reporting of health care quality metrics.