Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Nature ; 619(7968): 143-150, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380764

RESUMO

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Assuntos
Metabolismo Energético , Fator 15 de Diferenciação de Crescimento , Músculo Esquelético , Redução de Peso , Animais , Humanos , Camundongos , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Restrição Calórica , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Receptores Adrenérgicos beta/metabolismo , Redução de Peso/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 120(37): e2300624120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669389

RESUMO

Understanding aging is a key biological goal. Precision gerontology aims to predict how long individuals will live under different treatment scenarios. Calorie and protein restriction (CR and PR) extend lifespan in many species. Using data from C57BL/6 male mice under graded CR or PR, we introduce a computational thermodynamic model for entropy generation, which predicted the impact of the manipulations on lifespan. Daily entropy generation decreased significantly with increasing CR level, but not PR. Our predictions indicated the lifespan of CR mice should increase by 13 to 56% with 10 to 40% CR, relative to ad libitum-fed animals. This prediction was broadly consistent with the empirical observation of the lifespan impacts of CR in rodents. Modeling entropy fluxes may be a future strategy to identify antiaging interventions.


Assuntos
Geriatria , Longevidade , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Entropia , Dieta com Restrição de Proteínas
3.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38264846

RESUMO

According to the heat dissipation limit (HDL) theory, reproductive performance is limited by the capacity to dissipate excess heat. We tested the novel hypotheses that (1) the age-related decline in reproductive performance is due to an age-related decrease of heat dissipation capacity and (2) the limiting mechanism is more severe in animals with high metabolic rates. We used bank voles (Myodes glareolus) from lines selected for high swim-induced aerobic metabolic rate, which have also increased basal metabolic rate, and unselected control lines. Adult females from three age classes - young (4 months), middle-aged (9 months) and old (16 months) - were maintained at room temperature (20°C), and half of the lactating females were shaved to increase heat dissipation capacity. Old females from both selection lines had a decreased litter size, mass and growth rate. The peak-lactation average daily metabolic rate was higher in shaved than in unshaved mothers, and this difference was more profound among old than young and middle-aged voles (P=0.02). In females with large litters, milk production tended to be higher in shaved (least squares mean, LSM±s.e.: 73.0±4.74 kJ day-1) than in unshaved voles (61.8±4.78 kJ day-1; P=0.05), but there was no significan"t effect of fur removal on the growth rate [4.47±2.29 g (4 days-1); P=0.45]. The results provide mixed support of the HDL theory and no support for the hypotheses linking the differences in reproductive aging with either a deterioration in thermoregulatory capability or genetically based differences in metabolic rate.


Assuntos
Temperatura Alta , Lactação , Animais , Feminino , Ingestão de Energia , Arvicolinae , Envelhecimento , Metabolismo Energético
4.
Am J Hum Biol ; 36(4): e24005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843050

RESUMO

OBJECTIVES: Using equations to predict resting metabolic rate (RMR) has yielded different degrees of validity, particularly when sex and different physical activity levels were considered. Therefore, the purpose of the present study was to determine the validity of several different predictive equations to estimate RMR in female and male adults with varying physical activity levels. METHOD: We measured the RMR of 50 adults (26 females and 24 males) evenly distributed through activity levels varying from sedentary to ultra-endurance. Body composition was measured by dual X-ray absorptiometry and physical activity was monitored by accelerometry. Ten equations to predict RMR were applied (using Body Mass [BM]: Harris & Benedict, 1919; Mifflin et al., 1990 [MifflinBM]; Pontzer et al., 2021 [PontzerBM]; Schofield, 1985; FAO/WHO/UNU, 2004; and using Fat-Free Mass (FFM): Cunningham, 1991; Johnstone et al., 2006; Mifflin et al., 1990 [MifflinFFM]; Nelson et al. 1992; Pontzer et al., 2021 [PontzerFFM]). The accuracy of these equations was analyzed, and the effect of sex and physical activity was evaluated using different accuracy metrics. RESULTS: Equations using BM were less accurate for females, and their accuracy was influenced by physical activity and body composition. FFM equations were slightly less accurate for males but there was no obvious effect of physical activity or other sample parameters. PontzerFFM provides higher accuracy than other models independent of the magnitude of RMR, sex, activity levels, and sample characteristics. CONCLUSION: Equations using FFM were more accurate than BM equations in our sample. Future studies are needed to test the accuracy of RMR prediction equations in diverse samples.


Assuntos
Metabolismo Basal , Composição Corporal , Adulto , Humanos , Masculino , Feminino , Índice de Massa Corporal , Exercício Físico , Estado Nutricional , Calorimetria Indireta
5.
Appetite ; 200: 107421, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759755

RESUMO

Dietary protein modulates food intake (FI) via unclear mechanism(s). One possibility is that higher protein leads to greater post-ingestive heat production (Specific dynamic action: SDA) leading to earlier meal termination (increased satiation), and inhibition of further intake (increased satiety). The influence of dietary protein on feeding behaviour in C57BL/6J mice was tested using an automated FI monitoring system (BioDAQ), simultaneous to body temperature (Tb). Total FI, inter meal intervals (IMI, satiety) and meal size (MS, satiation) were related to changes in Tb after consuming low (5%, LP), moderate (15%, MP) and high (30%, HP) protein diets. Diets were tested over three conditions: 1) room temperature (RT, 21 ± 1 °C), 2) room temperature and running wheels (RTRW) and 3) low temperature (10 °C) and running wheels (LTRW). The differences between diets and conditions were also compared using mixed models. Mice housed at RT fed HP diet, reduced total FI compared with LP and MP due to earlier meal termination (satiation effect). FI was lowered in RTRW conditions with no differences between diets. FI significantly increased under LTRW conditions for all diets, with protein content leading to earlier meal termination (satiation) but not the intervals between feeding bouts (satiety). Tb fell immediately after feeding in all conditions. Despite a reduction in total FI in mice fed HP, mediated via increased satiation, this effect was not linked to increased Tb during meals. We conclude effects of dietary protein on intake are not mediated via SDA and Tb.

6.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330829

RESUMO

The evolutionary context of why caloric restriction (CR) activates physiological mechanisms that slow the process of aging remains unclear. The main goal of this analysis was to identify, using metabolomics, the common pathways that are modulated across multiple tissues (brown adipose tissue, liver, plasma, and brain) to evaluate two alternative evolutionary models: the "disposable soma" and "clean cupboards" ideas. Across the four tissues, we identified more than 10,000 different metabolic features. CR altered the metabolome in a graded fashion. More restriction led to more changes. Most changes, however, were tissue specific, and in some cases, metabolites changed in opposite directions in different tissues. Only 38 common metabolic features responded to restriction in the same way across all four tissues. Fifty percent of the common altered metabolites were carboxylic acids and derivatives, as well as lipids and lipid-like molecules. The top five modulated canonical pathways were l-carnitine biosynthesis, NAD (nicotinamide adenine dinucleotide) biosynthesis from 2-amino-3-carboxymuconate semialdehyde, S-methyl-5'-thioadenosine degradation II, NAD biosynthesis II (from tryptophan), and transfer RNA (tRNA) charging. Although some pathways were modulated in common across tissues, none of these reflected somatic protection, and each tissue invoked its own idiosyncratic modulation of pathways to cope with the reduction in incoming energy. Consequently, this study provides greater support for the clean cupboards hypothesis than the disposable soma interpretation.


Assuntos
Restrição Calórica , Carnitina/biossíntese , Metabolismo Energético/fisiologia , NAD/biossíntese , RNA de Transferência/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA de Transferência/genética , Distribuição Aleatória , Distribuição Tecidual
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282012

RESUMO

The Qinghai-Tibetan Plateau, with low precipitation, low oxygen partial pressure, and temperatures routinely dropping below -30 °C in winter, presents several physiological challenges to its fauna. Yet it is home to many endemic mammalian species, including the plateau pika (Ochotona curzoniae). How these small animals that are incapable of hibernation survive the winter is an enigma. Measurements of daily energy expenditure (DEE) using the doubly labeled water method show that pikas suppress their DEE during winter. At the same body weight, pikas in winter expend 29.7% less than in summer, despite ambient temperatures being approximately 25 °C lower. Combined with resting metabolic rates (RMRs), this gives them an exceptionally low metabolic scope in winter (DEE/RMRt = 1.60 ± 0.30; RMRt is resting metabolic rate at thermoneutrality). Using implanted body temperature loggers and filming in the wild, we show that this is achieved by reducing body temperature and physical activity. Thyroid hormone (T3 and T4) measurements indicate this metabolic suppression is probably mediated via the thyroid axis. Winter activity was lower at sites where domestic yak (Bos grunniens) densities were higher. Pikas supplement their food intake at these sites by eating yak feces, demonstrated by direct observation, identification of yak DNA in pika stomach contents, and greater convergence in the yak/pika microbiotas in winter. This interspecific coprophagy allows pikas to thrive where yak are abundant and partially explains why pika densities are higher where domestic yak, their supposed direct competitors for food, are more abundant.


Assuntos
Aclimatação , Altitude , Metabolismo Basal , Metabolismo Energético , Fezes/química , Lagomorpha/fisiologia , Estações do Ano , Animais , Tibet
8.
Curr Opin Clin Nutr Metab Care ; 26(5): 401-408, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522801

RESUMO

PURPOSE OF REVIEW: Physical activity impacts energy balance because of its contribution to total energy expenditure. Measuring physical activity energy expenditure (PAEE) is often performed by subtracting the estimated 24 h expenditure on basal metabolism (called basal energy expenditure or BEE) from the total energy expenditure (TEE) measured by doubly labelled water minus an estimate of the thermic effect of food (TEF). Alternatively it can be measured as the ratio of TEE/BEE, which is commonly called the physical activity level (PAL). RECENT FINDINGS: PAEE and PAL are widely used in the literature but their shortcomings are seldom addressed. In this review, we outline some of the issues with their use. SUMMARY: TEE and BEE are both measured with error. The estimate of PAEE by difference magnifies these errors and consequently the precision of estimated PAEE is about 3× worse than TEE and 25-35× worse than BEE. A second problem is that the component called PAEE is actually any component of TEE that is not BEE. We highlight how the diurnal variation of BEE, thermoregulatory expenditure and elevations of RMR because of stress will all be part of what is called PAEE and will contribute to a disconnect between what is measured and what energy expenditure is a consequence of physical activity. We emphasize caution should be exerted when interpreting these measurements of PAEE and PAL.


Assuntos
Metabolismo Basal , Água , Humanos , Composição Corporal , Metabolismo Energético , Exercício Físico , Calorimetria
9.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947172

RESUMO

The trade off between energy gained and expended is the foundation of understanding how, why and when animals perform any activity. Based on the concept that animal movements have an energetic cost, accelerometry is increasingly being used to estimate energy expenditure. However, validation of accelerometry as an accurate proxy for field metabolic rate in free-ranging species is limited. In the present study, Australasian gannets (Morus serrator) from the Pope's Eye colony (38°16'42″S 144°41'48″E), south-eastern Australia, were equipped with GPS and tri-axial accelerometers and dosed with doubly labelled water (DLW) to measure energy expenditure during normal behaviour for 3-5 days. The correlation between daily energy expenditure from the DLW and vectorial dynamic body acceleration (VeDBA) was high for both a simple correlation and activity-specific approaches (R2=0.75 and 0.80, respectively). Varying degrees of success were observed for estimating at-sea metabolic rate from accelerometry when removing time on land using published energy expenditure constants (R2=0.02) or activity-specific approaches (R2=0.42). The predictive capacity of energy expenditure models for total and at-sea periods was improved by the addition of total distance travelled and proportion of the sampling period spent at sea during the night, respectively (R2=0.61-0.82). These results indicate that accelerometry can be used to estimate daily energy expenditure in free-ranging gannets and its accuracy may depend on the inclusion of movement parameters not detected by accelerometry.


Assuntos
Acelerometria , Metabolismo Energético , Animais , Acelerometria/métodos , Água , Aves , Movimento
10.
J Exp Biol ; 226(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37767758

RESUMO

The limits to sustained energy intake set physiological upper boundaries that affect many aspects of human and animal performance. The mechanisms underlying these limits, however, remain unclear. We exposed Swiss mice to either supplementary thyroid hormones (THs) or the inhibitor methimazole during lactation at 21 or 32.5°C, and measured food intake, resting metabolic rate (RMR), milk energy output (MEO), serum THs and mammary gland gene expression of females, and litter size and mass of their offspring. Lactating females developed hyperthyroidism following exposure to supplementary THs at 21°C, but they did not significantly change body temperature, asymptotic food intake, RMR or MEO, and litter and mass were unaffected. Hypothyroidism, induced by either methimazole or 32.5°C exposure, significantly decreased asymptotic food intake, RMR and MEO, resulting in significantly decreased litter size and litter mass. Furthermore, gene expression of key genes in the mammary gland was significantly decreased by either methimazole or heat exposure, including gene expression of THs and prolactin receptors, and Stat5a and Stat5b. This suggests that endogenous THs are necessary to maintain sustained energy intake and MEO. Suppression of the thyroid axis seems to be an essential aspect of the mechanism by which mice at 32.5°C reduce their lactation performance to avoid overheating. However, THs do not define the upper limit to sustained energy intake and MEO at peak lactation at 21°C. Another, as yet unknown, factor prevents supplementary thyroxine exerting any stimulatory metabolic impacts on lactating mice at 21°C.


Assuntos
Lactação , Leite , Gravidez , Feminino , Humanos , Animais , Camundongos , Lactação/fisiologia , Metimazol , Temperatura Alta , Metabolismo Energético/fisiologia , Ingestão de Energia , Tamanho da Ninhada de Vivíparos , Hormônios Tireóideos
11.
J Anim Ecol ; 92(8): 1622-1638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212614

RESUMO

Climate warming can reduce food resources for animal populations. In species exhibiting parental care, parental effort is a 'barometer' of changes in environmental conditions. A key issue is the extent to which variation in parental effort can buffer demographic rates against environmental change. Seabirds breed in large, dense colonies and globally are major predators of small fish that are often sensitive to ocean warming. We explored the causes and consequences of annual variation in parental effort as indicated by standardised checks of the proportions of chicks attended by both, one or neither parent, in a population of common guillemots Uria aalge over four decades during which there was marked variation in marine climate and chick diet. We predicted that, for parental effort to be an effective buffer, there would be a link between environmental conditions and parental effort, but not between parental effort and demographic rates. Environmental conditions influenced multiple aspects of the prey delivered by parents to their chicks with prey species, length and energy density all influenced by spring sea surface temperature (sSST) in the current and/or previous year. Overall, the mean annual daily energy intake of chicks declined significantly when sSST in the current year was higher. In accordance with our first prediction, we found that parental effort increased with sSST in the current and previous year. However, the increase was insufficient to maintain chick daily energy intake. In contrast to our second prediction, we found that increased parental effort had major demographic consequences such that growth rate and fledging success of chicks, and body mass and overwinter survival of breeding adults all decreased significantly. Common guillemot parents were unable to compensate effectively for temperature-mediated variation in feeding conditions through behavioural flexibility, resulting in immediate consequences for breeding population size because of lower adult survival and potentially longer-term impacts on recruitment because of lower productivity. These findings highlight that a critical issue for species' responses to future climate change will be the extent to which behavioural buffering can offer resilience to deteriorating environmental conditions.


Assuntos
Charadriiformes , Animais , Comportamento Alimentar/fisiologia , Peixes , Dieta , Densidade Demográfica
12.
Br J Nutr ; 130(8): 1444-1457, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36805853

RESUMO

The European Food Safety Authority has suggested that EU countries implement the 2 × 24 h diet recall (2 × 24 h DR) method and physical activity (PA) measurements for national dietary surveys. Since 2000, Denmark has used 7 d food diaries (7 d FD) with PA questionnaires and measurements. The accuracy of the reported energy intakes (EI) from the two diet methods, pedometer-determined step counts and self-reported time spent in moderate-to-vigorous PA (MVPA) were compared with total energy expenditure measured by the doubly labelled water (TEEDLW) technique and with PA energy expenditure (PAEE), respectively. The study involved fifty-two male and sixty-eight female volunteers aged 18-60 years who were randomly assigned to start with either the 24 h DR or the web-based 7 d FD, and wore a pedometer for the first 7 d and filled in a step diary. The mean TEEDLW (11·5 MJ/d) was greater than the mean reported EI for the 7 d FD (9·5 MJ/d (P < 0·01)) but the same as the 2 × 24 h DR (11·5 MJ/d). The proportion of under-reporters was 34 % (7 d FD) and 4 % (2 × 24 h DR). Most participants preferred the 7 d DR as it was more flexible, despite altering their eating habits. Pearson's correlation between steps corrected for cycling and PAEE was r = 0·44, P < 0·01. Spearman's correlation for self-reported hours spent in MVPA and PAEE was r = 0·58, P < 0·01. The 2 × 24 h DR performs better than the existing 7 d FD method. Pedometer-determined steps and self-reported MVPA are good predictors of PAEE in adult Danes.


Assuntos
Dieta , Água , Adulto , Feminino , Humanos , Masculino , Dinamarca , Registros de Dieta , Ingestão de Energia , Metabolismo Energético , Internet , Adolescente , Adulto Jovem , Pessoa de Meia-Idade
13.
Proc Natl Acad Sci U S A ; 117(39): 24352-24358, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929014

RESUMO

Predicted increases in global average temperature are physiologically trivial for most endotherms. However, heat waves will also increase in both frequency and severity, and these will be physiologically more important. Lactating small mammals are hypothesized to be limited by heat dissipation capacity, suggesting high temperatures may adversely impact lactation performance. We measured reproductive performance of mice and striped hamsters (Cricetulus barabensis), including milk energy output (MEO), at temperatures between 21 and 36 °C. In both species, there was a decline in MEO between 21 and 33 °C. In mice, milk production at 33 °C was only 18% of that at 21 °C. This led to reductions in pup growth by 20% but limited pup mortality (0.8%), because of a threefold increase in growth efficiency. In contrast, in hamsters, MEO at 33 °C was reduced to 78.1% of that at 21 °C, yet this led to significant pup mortality (possibly infanticide) and reduced pup growth by 12.7%. Hamster females were more able to sustain milk production as ambient temperature increased, but they and their pups were less capable of adjusting to the lower supply. In both species, exposure to 36 °C resulted in rapid catastrophic lactation failure and maternal mortality. Upper lethal temperature was lowered by 3 to 6 °C in late lactation, making it a critically sensitive window to high ambient temperatures. Our data suggest future heat wave events will impact breeding success of small rodents, but this is based on animals with a long history in captivity. More work should be performed on wild rodents to confirm these impacts.


Assuntos
Cricetinae/fisiologia , Lactação , Camundongos/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Animais Selvagens/crescimento & desenvolvimento , Animais Selvagens/fisiologia , Cricetinae/crescimento & desenvolvimento , Ecossistema , Feminino , Masculino , Camundongos/crescimento & desenvolvimento , Leite/metabolismo , Gravidez , Reprodução , Temperatura
14.
J Sports Sci ; 41(12): 1218-1230, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37811806

RESUMO

This study aimed to test the hypothesis that the total daily energy expenditure (TDEE) of male academy soccer players is greater than players not enrolled on a formalised academy programme. English Premier League academy (ACAD: n = 8, 13 years, 50 ± 6 kg, 88 ± 3% predicted adult stature, PAS) and non-academy players (NON-ACAD: n = 6, 13 years, 53 ± 12 kg, 89 ± 3% PAS) were assessed for TDEE (via doubly labelled water) during a 14-day in-season period. External loading was evaluated during training (ACAD: 8 sessions, NON-ACAD: 2 sessions) and games (2 games for both ACAD and NON-ACAD) via GPS, and daily physical activity was evaluated using triaxial accelerometry. Accumulative duration of soccer activity (ACAD: 975 ± 23 min, NON-ACAD: 397 ± 2 min; p < 0.01), distance covered (ACAD: 54.2 ± 8.3 km, NON-ACAD: 21.6 ± 4.7 km; p < 0.05) and time engaged in daily moderate-to-vigorous (ACAD: 124 ± 17 min, NON-ACAD: 79 ± 18 min; p < 0.01) activity was greater in academy players. Academy players displayed greater absolute (ACAD: 3380 ± 517 kcal · d-1, NON-ACAD: 2641 ± 308 kcal · d-1; p < 0.05) and relative TDEE (ACAD: 66 ± 6 kcal · kg · d-1, NON-ACAD: 52 ± 10 kcal · kg · d-1; p < 0.05) versus non-academy players. Given the injury risk associated with high training volumes during growth and maturation, data demonstrate the requirement for academy players to consume sufficient energy (and carbohydrate) intake to support the enhanced energy cost of academy programmes.


Assuntos
Ingestão de Energia , Futebol , Humanos , Adulto , Masculino , Água , Carboidratos da Dieta , Exercício Físico
15.
J Therm Biol ; 118: 103748, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984051

RESUMO

Understanding how birds annually allocate energy to cope with changing environmental conditions and physiological states is a crucial question in avian ecology. There are several hypotheses to explain species' energy allocation. One prominent hypothesis suggests higher energy expenditure in winter due to increased thermoregulatory costs. The "reallocation" hypothesis suggests no net difference in seasonal energy requirements, while the "increased demand" hypothesis predicts higher energy requirements during the breeding season. Birds are expected to adjust their mass and/or metabolic intensity in ways that are consistent with their energy requirements. Here, we look for metabolic signatures of seasonal variation in energy requirements of a resident passerine of a temperate-zone (great tit, Parus major). To do so, we measured whole-body and mass-independent basal (BMR), summit (Msum), and field (FMR) metabolic rates during late winter and during breeding in Belgian great tits. During the breeding season, birds had on average 10% higher whole-body BMR and FMR compared to winter, while their Msum decreased by 7% from winter to breeding. Mass-independent metabolic rates showed a 10% increase in BMR and a 7% decrease in Msum from winter to breeding. Whole-body BMR was correlated with Msum, but this relationship did not hold for mass-independent metabolic rates. The modest seasonal change we observed suggests that great tits in our temperature study area maintain a largely stable energy budget throughout the year, which appears mostly consistent with the reallocation hypothesis.


Assuntos
Clima , Passeriformes , Animais , Estações do Ano , Metabolismo Energético/fisiologia , Passeriformes/fisiologia , Temperatura , Metabolismo Basal/fisiologia
16.
Int J Obes (Lond) ; 46(2): 325-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716426

RESUMO

BACKGROUND/OBJECTIVES: Adiponectin represents an important link between adipose tissue dysfunction and cardiometabolic risk in obesity; however, there is a lack of data on the effects of adiponectin-related genetic variations and gene-diet interactions on metabolic disorders in children. We aimed to investigate possible interactions between adiponectin-related genetic variants and habitual dietary patterns on metabolic health among children with normal weight versus overweight/obesity, and whether these effects in childhood longitudinally contribute to metabolic risk at follow-up. SUBJECTS/METHODS: In total, 3,317 Chinese children aged 6-18 at baseline and 339 participants at 10-year follow-up from the Beijing Child and Adolescent Metabolic Syndrome study cohort were included. Baseline lifestyle factors, plasma adiponectin levels, and six adiponectin-related genetic variants resulting from GWAS in East Asians (loci in/near ADIPOQ, CDH13, WDR11FGF, CMIP, and PEPD) were assessed for their associations with the metabolic disorders. Being metabolically unhealthy was defined by exhibiting any metabolic syndrome component. RESULTS: Among the six loci, ADIPOQ rs6773957 (OR 1.26, 95% CI:1.07-1.47, P = 0.004) and adiponectin receptor CDH13 rs4783244 (0.82, 0.69-0.96, P = 0.017) were correlated with metabolic risks independent of lifestyle factors in normal-weight children, but the associations were less obvious in those with overweight/obesity. A significant interaction between rs6773957 and diet (Pinteraction = 0.004) for metabolic health was observed in normal-weight children. The adiponectin-decreasing allele of rs6773957 was associated with greater metabolic risks in individuals with unfavorable diet patterns (P < 0.001), but not in those with healthy patterns (P > 0.1). A similar interaction effect was observed using longitudinal data (Pinteraction = 0.029). CONCLUSIONS: These findings highlight a novel gene-diet interaction on the susceptibility to cardiometabolic disorders, which has a long-term impact from childhood onward, particularly in those with normal weight. Personalized dietary advice in these individuals may be recommended as an early possible therapeutic measure to improve metabolic health.


Assuntos
Adiponectina/análise , Comportamento Alimentar/fisiologia , Variação Genética/fisiologia , Obesidade/fisiopatologia , Adiponectina/metabolismo , Adolescente , Criança , China/epidemiologia , Estudos de Coortes , Feminino , Variação Genética/genética , Humanos , Masculino , Obesidade/dietoterapia , Obesidade/metabolismo , Estudos Prospectivos
17.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35593255

RESUMO

Accelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increases. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives. Combining biologging with the doubly labelled water method, we simultaneously recorded daily energy expenditure (DEE) and triaxial acceleration in one of the world's smallest wing-propelled breath-hold divers, the dovekie (Alle alle). These data were used to estimate the activity-specific costs of flying and diving and to test whether overall dynamic body acceleration (ODBA) is a reliable predictor of DEE in this abundant seabird. Average DEE for chick-rearing dovekies was 604±119 kJ day-1 across both sampling years. Despite recording lower stroke frequencies for diving than for flying (in line with allometric predictions for auks), dive costs were estimated to surpass flight costs in our sample of birds (flying: 7.24× basal metabolic rate, BMR; diving: 9.37× BMR). As expected, ODBA was not an effective predictor of DEE in this species. However, accelerometer-derived time budgets did accurately estimate DEE in dovekies. This work represents an empirical example of how the apparent energetic costs of buoyancy and thermoregulation limit the effectiveness of ODBA as the sole predictor of overall energy expenditure in small shallow-diving endotherms.


Assuntos
Charadriiformes , Mergulho , Aceleração , Animais , Aves/fisiologia , Mergulho/fisiologia , Metabolismo Energético/fisiologia , Consumo de Oxigênio
18.
Bioessays ; 42(1): e1900156, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830309

RESUMO

Most people are aware of the health benefits of being physically active. The question arises then why people so easily fall into sedentary habits. The idea developed here is that sedentary behavior is part of a suite of behaviors to reduce levels of physical activity that were strongly selected in the evolutionary past, likely because high levels of physical activity had direct negative consequences for survival. However, hunter-gatherer populations could not reduce activity indefinitely because of the need to be active to hunt for, and gather food. Hence they never experienced low levels of activity that are damaging to health, and no corresponding mechanism avoiding low activity evolved. Consequently, gene variants promoting efficiency of activity and increased sedentariness were never selected against. Modern society facilitates reduced activity by providing many options to become less active and divorcing food intake from the need to be active. Choosing the less active option is hard wired in the genes; this explains why being sedentary is so common, and why reversing it is so difficult. Incentivizing activity may be enabled using modern technology, but ultimately may only end up replacing one set of health issues with others. Also see the video abstract here https://youtu.be/ekHbUwPw-v4.


Assuntos
Comportamento Sedentário , Animais , Evolução Biológica , Exercício Físico , Feminino , Fósseis , Humanos , Comportamento Predatório , Primatas , Seleção Genética , Mordeduras de Serpentes , Comportamento Social
19.
J Exp Biol ; 224(Pt 2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500325

RESUMO

Many captive Asian elephant populations are not self-sustaining, possibly due in part to obesity-related health and reproductive issues. This study investigated relationships between estimated body composition and metabolic function, inflammatory markers, ovarian activity (females only) and physical activity levels in 44 Asian elephants (n=35 females, n=9 males). Deuterium dilution was used to measure total body water from which fat mass (FM) and fat-free mass (FFM) could be derived to estimate body composition. Serum was analyzed for progestagens and estradiol (females only), deuterium, glucose, insulin and amyloid A. Physical activity was assessed by an accelerometer placed on the elephant's front leg for at least 2 days. Relative fat mass (RFM) - the amount of fat relative to body mass - was calculated to take differences in body size between elephants into consideration. Body fat percentage ranged from 2.01% to 24.59%. Male elephants were heavier (P=0.043), with more FFM (P=0.049), but not FM (P>0.999), than females. For all elephants, estimated RFM (r=0.45, P=0.004) was positively correlated with insulin. Distance walked was negatively correlated with age (r=-0.46, P=0.007). When adjusted for FFM and age (P<0.001), non-cycling females had less fat compared with cycling females, such that for every 100 kg increase in FM, the odds of cycling were 3 times higher (P<0.001). More work is needed to determine what an unhealthy amount of fat is for elephants; however, our results suggest higher adiposity may contribute to metabolic perturbations.


Assuntos
Elefantes , Adiposidade , Animais , Animais de Zoológico , Composição Corporal , Feminino , Masculino , Obesidade , Reprodução
20.
Br J Nutr ; 125(9): 983-997, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32718378

RESUMO

Physical activity questionnaires (PAQ) could be suitable tools in free-living people for measures of physical activity, total and activity energy expenditure (TEE and AEE). This meta-analysis was performed to determine valid PAQ for estimating TEE and AEE using doubly labelled water (DLW). We identified data from relevant studies by searching Google Scholar, PubMed and Scopus databases. This revealed thirty-eight studies that had validated PAQ with DLW and reported the mean differences between PAQ and DLW measures of TEE (TEEDLW - TEEPAQ) and AEE (AEEDLW - AEEPAQ). We assessed seventy-eight PAQ consisting of fifty-nine PAQ that assessed TEE and thirty-five PAQ that examined AEE. There was no significant difference between TEEPAQ and TEEDLW with a weighted mean difference of -243·3 and a range of -841·4 to 354·6 kJ/d, and a significant weighted mean difference of AEEDLW - AEE PAQ 414·6 and a range of 78·7-750·5. To determine whether any PAQ was a valid tool for estimating TEE and AEE, we carried out a subgroup analysis by type of PAQ. Only Active-Q, administered in two seasons, and 3-d PA diaries were correlated with TEE by DLW at the population level; however, these two PAQ did not demonstrate an acceptable limit of agreement at individual level. For AEE, no PAQ was correlated with DLW either at the population or at the individual levels. Active-Q and 3-d PA diaries were identified as the only valid PAQ for TEE estimation. Further well-designed studies are needed to verify this result and identify additional valid PAQ.


Assuntos
Metabolismo Energético , Exercício Físico , Inquéritos e Questionários , Adolescente , Adulto , Idoso , Metabolismo Basal , Criança , Óxido de Deutério , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isótopos de Oxigênio , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA