Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Age Ageing ; 53(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615247

RESUMO

BACKGROUND: Lower skeletal muscle mitochondrial function is associated with future cognitive impairment and mobility decline, but the biological underpinnings for these associations are unclear. We examined metabolomic markers underlying skeletal muscle mitochondrial function, cognition and motor function. METHODS: We analysed data from 560 participants from the Baltimore Longitudinal Study of Aging (mean age: 68.4 years, 56% women, 28% Black) who had data on skeletal muscle oxidative capacity (post-exercise recovery rate of phosphocreatine, kPCr) via 31P magnetic resonance spectroscopy and targeted plasma metabolomics using LASSO model. We then examined which kPCr-related markers were also associated with cognition and motor function in a larger sample (n = 918, mean age: 69.4, 55% women, 27% Black). RESULTS: The LASSO model revealed 24 metabolites significantly predicting kPCr, with the top 5 being asymmetric dimethylarginine, lactic acid, lysophosphatidylcholine a C18:1, indoleacetic acid and triacylglyceride (17:1_34:3), also significant in multivariable linear regression. The kPCr metabolite score was associated with cognitive or motor function, with 2.5-minute usual gait speed showing the strongest association (r = 0.182). Five lipids (lysophosphatidylcholine a C18:1, phosphatidylcholine ae C42:3, cholesteryl ester 18:1, sphingomyelin C26:0, octadecenoic acid) and 2 amino acids (leucine, cystine) were associated with both cognitive and motor function measures. CONCLUSION: Our findings add evidence to the hypothesis that mitochondrial function is implicated in the pathogenesis of cognitive and physical decline with aging and suggest that targeting specific metabolites may prevent cognitive and mobility decline through their effects on mitochondria. Future omics studies are warranted to confirm these findings and explore mechanisms underlying mitochondrial dysfunction in aging phenotypes.


Assuntos
Disfunção Cognitiva , Lisofosfatidilcolinas , Feminino , Humanos , Idoso , Masculino , Estudos Longitudinais , Músculo Esquelético , Cognição
2.
J Magn Reson Imaging ; 58(1): 284-293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36326302

RESUMO

BACKGROUND: Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE: To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE: Cross sectional. POPULATION: A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE: A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT: Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS: Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS: R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION: These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 4.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Masculino , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão/métodos , Teorema de Bayes , Estudos Transversais , Imageamento por Ressonância Magnética , Envelhecimento , Água , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Substância Branca/diagnóstico por imagem
3.
Proc Natl Acad Sci U S A ; 117(40): 24709-24719, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958644

RESUMO

Many diseases have no visual cues in the early stages, eluding image-based detection. Today, osteoarthritis (OA) is detected after bone damage has occurred, at an irreversible stage of the disease. Currently no reliable method exists for OA detection at a reversible stage. We present an approach that enables sensitive OA detection in presymptomatic individuals. Our approach combines optimal mass transport theory with statistical pattern recognition. Eighty-six healthy individuals were selected from the Osteoarthritis Initiative, with no symptoms or visual signs of disease on imaging. On 3-y follow-up, a subset of these individuals had progressed to symptomatic OA. We trained a classifier to differentiate progressors and nonprogressors on baseline cartilage texture maps, which achieved a robust test accuracy of 78% in detecting future symptomatic OA progression 3 y prior to symptoms. This work demonstrates that OA detection may be possible at a potentially reversible stage. A key contribution of our work is direct visualization of the cartilage phenotype defining predictive ability as our technique is generative. We observe early biochemical patterns of fissuring in cartilage that define future onset of OA. In the future, coupling presymptomatic OA detection with emergent clinical therapies could modify the outcome of a disease that costs the United States healthcare system $16.5 billion annually. Furthermore, our technique is broadly applicable to earlier image-based detection of many diseases currently diagnosed at advanced stages today.


Assuntos
Aprendizado de Máquina , Osteoartrite do Joelho/diagnóstico , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Estudos de Coortes , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia
4.
Alzheimers Dement ; 19(10): 4436-4445, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37530130

RESUMO

INTRODUCTION: Mitochondrial dysfunction is implicated in the pathophysiology of many chronic diseases. Whether it is related to cognitive impairment and pathological markers is unknown. METHODS: We examined the associations of in vivo skeletal muscle mitochondrial function (post-exercise recovery rate of phosphocreatine [kPCr] via magnetic resonance [MR] spectroscopy with future mild cognitive impairment (MCI) or dementia, and with positron emission tomography (PET) and blood biomarkers of Alzheimer's disease [AD] and neurodegeneration (i.e., Pittsburgh Compound-B [PiB] distribution volume ratio [DVR] for amyloid beta [Aß], flortaucipir (FTP) standardized uptake value ratio [SUVR] for tau, Aß42 /40 ratio, phosphorylated tau 181 [p-tau181], neurofilament light chain [NfL], and glial fibrillary acidic protein [GFAP]). RESULTS: After covariate adjustment, each standard deviation (SD) higher kPCr level was associated with 52% lower hazards of developing MCI/dementia, and with 59% lower odds of being PiB positive with specific associations in DVR of frontal, parietal, and temporal regions, and cingulate cortex and pallidum. Higher kPCr level was also associated with lower plasma GFAP. DISCUSSION: In aging, mitochondrial dysfunction may play a vital role in AD pathological changes and neuroinflammation. Highlights Higher in vivo mitochondrial function is related to lower risk of mild cognitive impairment (MCI)/dementia. Higher in vivo mitochondrial function is related to lower amyloid tracer uptake. Higher in vivo mitochondrial function is related to lower plasma neuroinflammation. Mitochondrial dysfunction may play a key role in Alzheimer's disease (AD) and neurodegeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Disfunção Cognitiva/metabolismo , Proteínas tau/metabolismo , Biomarcadores , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Tomografia por Emissão de Pósitrons/métodos
5.
Alzheimers Dement ; 19(7): 3098-3107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36720000

RESUMO

INTRODUCTION: The influence of myelination on longitudinal changes in cognitive performance remains unclear. METHODS: For each participant (N = 123), longitudinal cognitive scores were calculated. Myelin content was probed using myelin water fraction (MWF) or longitudinal relaxation rate (R1 ); both are MRI measures sensitive to myelin, with MWF being specific. RESULTS: Lower MWF was associated with steeper declines in executive function (p < .02 in all regions) and lower R1 was associated with steeper declines in verbal fluency (p < .03 in all regions). Additionally, lower R1 was associated with steeper declines in executive function (p < .02 in all regions) and memory (p < .04 in occipital and cerebral white matter) but did not survive Bonferroni correction. DISCUSSION: We demonstrate significant relationships between myelin content and the rates of change in cognitive performance among cognitively normal individuals. These findings highlight the importance of myelin in cognitive functioning and suggest MWF and R1 as imaging biomarkers to predict cognitive changes.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Bainha de Mielina , Cognição , Função Executiva , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo
6.
Neuroimage ; 251: 118988, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150834

RESUMO

Mounting evidence indicates that myelin breakdown may represent an early phenomenon in neurodegeneration, including Alzheimer's disease (AD). Understanding the factors influencing myelin synthesis and breakdown will be essential for the development and evaluation of therapeutic interventions. In this work, we assessed associations between genetic variance in apolipoprotein E (APOE) and cerebral myelin content. Quantitative magnetic resonance imaging (qMRI) was performed on a cohort of 92 cognitively unimpaired adults ranging in age from 24 to 94 years. We measured whole-brain myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive measures of myelin content, in carriers of the APOE ε4 or APOE ε2 alleles and individuals with the ε33 genotype. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between MWF or relaxation rates and APOE isoforms, accounting for confounding variables including age, sex, and race, in several cerebral structures. Our results indicate that carriers of APOE ε2 exhibited significantly higher myelin content, that is, higher MWF, R1 or R2 values, in most brain regions investigated as compared to noncarriers, while ε4 carriers exhibited trends toward lower myelin content compared to noncarriers. Finally, all qMRI metrics exhibited quadratic, inverted U-shape, associations with age; attributed to the development of myelination from young to middle age followed by progressive loss of myelin afterwards. Sex and race effects on myelination were, overall, nonsignificant. These findings suggest that individual genetic background may influence cerebral myelin maintenance. Although preliminary, this work lays the foundation for further investigations to clarify the relationship between APOE genotype and myelination, which may suggest potential targets in treatment or prevention of AD.


Assuntos
Doença de Alzheimer , Bainha de Mielina , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/metabolismo , Alelos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Genótipo , Humanos , Pessoa de Meia-Idade , Bainha de Mielina/metabolismo , Adulto Jovem
7.
Neuroimage ; 247: 118727, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813969

RESUMO

White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.


Assuntos
Imagem de Tensor de Difusão , Substância Branca/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Mapeamento Encefálico , Estudos de Coortes , Feminino , Humanos , Longevidade , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Adulto Jovem
8.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673075

RESUMO

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
9.
Magn Reson Chem ; 60(11): 1076-1086, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35593385

RESUMO

Many methods have been developed for estimating the parameters of biexponential decay signals, which arise throughout magnetic resonance relaxometry (MRR) and the physical sciences. This is an intrinsically ill-posed problem so that estimates can depend strongly on noise and underlying parameter values. Regularization has proven to be a remarkably efficient procedure for providing more reliable solutions to ill-posed problems, while, more recently, neural networks have been used for parameter estimation. We re-address the problem of parameter estimation in biexponential models by introducing a novel form of neural network regularization which we call input layer regularization (ILR). Here, inputs to the neural network are composed of a biexponential decay signal augmented by signals constructed from parameters obtained from a regularized nonlinear least-squares estimate of the two decay time constants. We find that ILR results in a reduction in the error of time constant estimates on the order of 15%-50% or more, depending on the metric used and signal-to-noise level, with greater improvement seen for the time constant of the more rapidly decaying component. ILR is compatible with existing regularization techniques and should be applicable to a wide range of parameter estimation problems.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
10.
Neuroimage ; 239: 118267, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34139358

RESUMO

Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer's disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration. We assessed associations between iron content and myelin content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was negatively associated with iron content in most brain regions evaluated indicating that lower myelin content corresponds to higher iron content. Moreover, iron content was significantly higher with advanced age in most structures, with men exhibiting a trend towards higher iron content as compared to women. Finally, relationship between MWF and age, in all brain regions investigated, suggests that brain myelination continues until middle age, followed by degeneration at older ages. This work establishes a foundation for further investigations of the etiology and sequelae of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging markers for disease progression and treatment.


Assuntos
Envelhecimento/metabolismo , Química Encefálica , Substância Cinzenta/diagnóstico por imagem , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Água Corporal , Estudos Transversais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Oligodendroglia/química , Adulto Jovem
11.
Hum Brain Mapp ; 42(8): 2362-2373, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595168

RESUMO

The g-ratio, defined as the inner-to-outer diameter of a myelinated axon, is associated with the speed of nerve impulse conduction, and represents an index of axonal myelination and integrity. It has been shown to be a sensitive and specific biomarker of neurodevelopment and neurodegeneration. However, there have been very few magnetic resonance imaging studies of the g-ratio in the context of normative aging; characterizing regional and time-dependent cerebral changes in g-ratio in cognitively normal subjects will be a crucial step in differentiating normal from abnormal microstructural alterations. In the current study, we investigated age-related differences in aggregate g-ratio, that is, g-ratio averaged over all fibers within regions of interest, in several white matter regions in a cohort of 52 cognitively unimpaired participants ranging in age from 21 to 84 years. We found a quadratic, U-shaped, relationship between aggregate g-ratio and age in most cerebral regions investigated, suggesting myelin maturation until middle age followed by a decrease at older ages. As expected, we observed that these age-related differences vary across different brain regions, with the frontal lobes and parietal lobes exhibiting slightly earlier ages of minimum aggregate g-ratio as compared to more posterior structures such as the occipital lobes and temporal lobes; this agrees with the retrogenesis paradigm. Our results provide evidence for a nonlinear association between age and aggregate g-ratio in a sample of adults from a highly controlled population. Finally, sex differences in aggregate g-ratio were observed in several cerebral regions, with women exhibiting overall lower values as compared to men; this likely reflects the greater myelin content in women's brain, in agreement with recent investigations.


Assuntos
Envelhecimento , Axônios , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Int J Obes (Lond) ; 45(4): 850-859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483582

RESUMO

BACKGROUND: Myelin loss is a central feature of several neurodegenerative diseases, including Alzheimer's disease (AD). In animal studies, a link has been established between obesity and impairment of oligodendrocyte maturation, the cells that produce and maintain myelin. Although clinical magnetic resonance imaging (MRI) studies have revealed microstructural alterations of cerebral white matter tissue in subjects with obesity, no specific myelin vs. obesity correlation studies have been performed in humans using a direct myelin content metric. OBJECTIVES: To assess the association between obesity and myelin integrity in cerebral white matter using advanced MRI methodology for myelin content imaging. METHODS: Studies were performed in the clinical unit of the National Institute on Aging on a cohort of 119 cognitively unimpaired adults. Using advanced MRI methodology, we measured whole-brain myelin water fraction (MWF), a marker of myelin content. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between MWF and obesity, measured using the body mass index (BMI) or waist circumference (WC), in various white matter brain regions. RESULTS: MWF was negatively associated with BMI or WC in all brain regions evaluated. These associations, adjusted for sex, ethnicity, and age, were statistically significant in most brain regions examined (p < 0.05), with higher BMI or WC corresponding to lower myelin content. Finally, in agreement with previous work, MWF exhibited a quadratic, inverted U-shaped, association with age; this is attributed to the process of myelination from youth through middle age, followed by demyelination afterward. CONCLUSIONS: These findings suggest that obesity was significantly associated with white matter integrity, and in particular myelin content. We expect that this work will lay the foundation for further investigations to clarify the nature of myelin damage in neurodegeneration, including AD, and the effect of lifestyle factors such as diet and physical activity on myelination.


Assuntos
Encéfalo/diagnóstico por imagem , Bainha de Mielina/patologia , Obesidade/patologia , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Índice de Massa Corporal , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/química , Circunferência da Cintura , Adulto Jovem
13.
Magn Reson Med ; 86(2): 1045-1057, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724547

RESUMO

PURPOSE: To develop an anomalous (non-Gaussian) diffusion model for characterizing skeletal muscle perfusion using multi-b-value DWI. THEORY AND METHODS: Fick's first law was extended for describing tissue perfusion as anomalous superdiffusion, which is non-Gaussian diffusion exhibiting greater particle spread than that of the Gaussian case. This was accomplished using a space-fractional derivative that gives rise to a power-law relationship between mean squared displacement and time, and produces a stretched exponential signal decay as a function of b-value. Numerical simulations were used to estimate parameter errors under in vivo conditions, and examine the effect of limited SNR and residual fat signal. Stretched exponential DWI parameters, α and D , were measured in thigh muscles of 4 healthy volunteers at rest and following in-magnet exercise. These parameters were related to a stable distribution of jump-length probabilities and used to estimate microvascular volume fractions. RESULTS: Numerical simulations showed low dispersion in parameter estimates within 1.5% and 1%, and bias errors within 3% and 10%, for α and D , respectively. Superdiffusion was observed in resting muscle, and to a greater degree following exercise. Resting microvascular volume fraction was between 0.0067 and 0.0139 and increased between 2.2-fold and 4.7-fold following exercise. CONCLUSIONS: This model captures superdiffusive molecular motions consistent with perfusion, using a parsimonious representation of the DWI signal, providing approximations of microvascular volume fraction comparable with histological estimates. This signal model demonstrates low parameter-estimation errors, and therefore holds potential for a wide range of applications in skeletal muscle and elsewhere in the body.


Assuntos
Imagem de Difusão por Ressonância Magnética , Músculo Esquelético , Difusão , Humanos , Músculo Esquelético/diagnóstico por imagem , Distribuição Normal , Perfusão
14.
Neuroimage ; 223: 117369, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931942

RESUMO

Most magnetic resonance imaging (MRI) studies investigating the relationship between regional brain myelination or axonal density and aging have relied upon nonspecific methods to probe myelin and axonal content, including diffusion tensor imaging and relaxation time mapping. While these studies have provided pivotal insights into changes in cerebral architecture with aging and pathology, details of the underlying microstructural alterations have not been fully elucidated. In the current study, we used the BMC-mcDESPOT analysis, a direct and specific multicomponent relaxometry method for imaging of myelin water fraction (MWF), a marker of myelin content, and NODDI, an emerging multicomponent diffusion technique, for neurite density index (NDI) imaging, a proxy of axonal density. We investigated age-related differences in MWF and NDI in several white matter brain regions in a cohort of cognitively unimpaired participants over a wide age range. Our results indicate a quadratic, inverted U-shape, relationship between MWF and age in all brain regions investigated, suggesting that myelination continues until middle age followed by a decrease at older ages, in agreement with previous work. We found a similarly complex regional association between NDI and age, with several cerebral structures also exhibiting a quadratic, inverted U-shape, relationship. This novel observation suggests an increase in axonal density until the fourth decade of age followed by a rapid loss at older ages. We also observed that these age-related differences in MWF and NDI vary across different brain regions, as expected. Finally, our study indicates no significant association between MWF and NDI in most cerebral structures investigated, although this association approached significance in a limited number of brain regions, indicating the complementary nature of their information and encouraging further investigation. Overall, we find evidence of nonlinear associations between age and myelin or axonal density in a sample of well-characterized adults, using direct myelin and axonal content imaging methods.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Neuritos/fisiologia , Substância Branca/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Adulto Jovem
15.
Neuroimage ; 206: 116307, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669302

RESUMO

Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain. These studies have largely focused on the cerebrum, with very few MR investigations addressing age-dependent differences in the brainstem, in spite of its central role in the regulation of vital functions. Several studies indicate early brainstem alterations in a myriad of neurodegenerative diseases and dementias. The paucity of MR-focused investigations is likely due in part to the challenges imposed by the small structural scale of the brainstem itself as well as of substructures within, requiring accurate high spatial resolution imaging studies. In this work, we applied our recently developed approach to high-resolution myelin water fraction (MWF) mapping, a proxy for myelin content, to investigate myelin differences with normal aging within the brainstem. In this cross-sectional investigation, we studied a large cohort (n = 125) of cognitively unimpaired participants spanning a wide age range (21-94 years) and found a decrease in myelination with age in most brainstem regions studied, with several regions exhibiting a quadratic association between myelin and age. We believe that this study is the first investigation of MWF differences with normative aging in the adult brainstem. Further, our results provide reference MWF values.


Assuntos
Envelhecimento , Água Corporal/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Bainha de Mielina/ultraestrutura , Neuroimagem , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Adulto Jovem
16.
NMR Biomed ; 33(12): e4315, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32803775

RESUMO

There has been a tremendous increase in applications of the inverse problem framework to parameter estimation in magnetic resonance. Attempting to capture both the basics of this formalism and modern developments would require an article of inordinate length. Therefore, in the following, we provide basic material as a practical introduction to the topic and an entree to the literature. First, we describe the formulation of linear and nonlinear inverse problems, with an emphasis on signal equations arising in magnetic resonance. We then describe the Fredholm equation of the first kind as a paradigm for these problems. This is followed by much more detailed considerations for determining solutions in the linear case, including central concepts such as condition number, regularization, and stability. Solution methods for nonlinear inverse problems are described next, followed by a treatment of their stability and regularization. Finally, we provide an introduction to compressed sensing, with signal reconstruction formulated as the solution to an inverse problem, making use of much of the previous material. Throughout, the emphasis is on outlines of the theory and on numerical examples, rather than on mathematical rigor and completeness.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Compressão de Dados , Análise de Fourier , Análise dos Mínimos Quadrados , Modelos Lineares , Dinâmica não Linear , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
17.
NMR Biomed ; 33(12): e4366, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32789944

RESUMO

We address the problem of analyzing noise-corrupted magnetic resonance transverse decay signals as a superposition of underlying independently decaying monoexponentials of positive amplitude. First, we indicate the manner in which this is an ill-conditioned inverse problem, rendering the analysis unstable with respect to noise. Second, we define an approach to this analysis, stabilized solely by the nonnegativity constraint without regularization. This is made possible by appropriate discretization, which is coarser than that often used in practice. Thirdly, we indicate further stabilization by inspecting the plateaus of cumulative distributions. We demonstrate our approach through analysis of simulated myelin water fraction measurements, and compare the accuracy with more conventional approaches. Finally, we apply our method to brain imaging data obtained from a human subject, showing that our approach leads to maps of the myelin water fraction which are much more stable with respect to increasing noise than those obtained with conventional approaches.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Masculino , Bainha de Mielina/metabolismo , Razão Sinal-Ruído , Água , Adulto Jovem
18.
Magn Reson Med ; 82(1): 189-201, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30828871

RESUMO

PURPOSE: To introduce an accurate, rapid, and practical method for active B1 field mapping based on the double-angle method (DAM) in the steady-state (SS) signal regime. METHODS: We introduced and evaluated the performance of the SS-DAM approach to map the B1 field and compared the results to those calculated from the conventional DAM approach. Similar to DAM, SS-DAM uses the signal intensity ratio of 2 magnitude images acquired with different flip angles using the spoiled gradient recalled echo sequence. However, unlike DAM, in SS-DAM, these 2 spoiled gradient recalled echo images are acquired with very short TR, which allows substantially reduced acquisition time. Numerical, phantom, and in vivo brain imaging analyses, representing a wide range of T1 s and large B1 variation, were conducted. Methods for further accelerating acquisition were also investigated. RESULTS: Our results demonstrate the potential of the SS-DAM approach to be applied widely in the clinical setting. B1 maps derived from SS-DAM were demonstrated to be quantitatively comparable to those derived from DAM but were derived much more rapidly. Large-volume B1 maps were obtained at a field strength of 3 tesla within clinically acceptable acquisition times. CONCLUSION: SS-DAM permits accurate B1 mapping in the clinical setting, with whole-brain coverage in less than 1 min.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
19.
Magn Reson Med ; 81(5): 3209-3217, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667088

RESUMO

PURPOSE: Magnetic resonance imaging of ex vivo cartilage measures parameters such as T2 and magnetization transfer ratio (MTR), which reflect structural changes associated with osteoarthritis. Samples are often immersed in aqueous solutions to prevent dehydration and to to improve susceptibility matching. This study sought to determine the extent to which T2 and MTR changes are attributable to immersion alone and to identify immersion conditions to minimize this confounding factor. METHODS: T2 and MTR were measured before and after immersion for up to 24 hours at 4°C. Bovine nasal and articular cartilage and human articular cartilage were studied. Experimental groups included undisturbed immersion in Fluorinert FC-770, a susceptibility-matched, hydrophobic liquid with minimal tissue penetration, and immersion in Fluorinert, Dulbecco's phosphate-buffered saline (DPBS), or saline, with removal from the magnet between scans. 19 F and 1 H-MRI were used to detect cartilage penetration by Fluorinert and swelling, respectively. RESULTS: Saline and DPBS immersion rapidly increased T2 , wet weight and cartilage volume and decreased MTR, suggesting increased water content for all cartilage types. Fluorinert-immersed samples exhibited minimal changes in T2 or MTR. No ingress of Fluorinert was detected after 2 weeks of continuous immersion at 4°C. CONCLUSION: Ex vivo quantitative MR studies of cartilage may be confounded by the effects of immersion in aqueous solution, which may be comparable to or larger than effects attributed to pathology. These effects may be mitigated by immersion in perfluorocarbon liquids such as Fluorinert FC-770.


Assuntos
Cartilagem/diagnóstico por imagem , Fluorocarbonos/química , Imageamento por Ressonância Magnética , Osteoartrite/diagnóstico por imagem , Algoritmos , Animais , Cartilagem Articular/diagnóstico por imagem , Bovinos , Imagem por Ressonância Magnética de Flúor-19 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Articulação do Joelho/cirurgia , Espectroscopia de Ressonância Magnética , Magnetismo , Cartilagens Nasais/diagnóstico por imagem , Prótons
20.
NMR Biomed ; 32(5): e4072, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861224

RESUMO

Aging is associated with impaired endothelium-dependent vasodilation that leads to muscle perfusion impairment and contributes to organ dysfunction. Impaired muscle perfusion may result in inadequate delivery of oxygen and nutrients during and after muscle contraction, leading to muscle damage. The ability to study the relationship between perfusion and muscle damage has been limited using traditional muscle perfusion measures, which are invasive and risky. To overcome this limitation, we optimized a diffusion-weighted MRI sequence and validated an intravoxel incoherent motion (IVIM) analysis based on Monte Carlo simulation to study muscle perfusion impairment with aging during post-exercise hyperemia. Simulation results demonstrated that the bias of IVIM-derived perfusion fraction (fp ) and diffusion of water molecules in extra-vascular tissue (D) ranged from -3.3% to 14% and from -16.5% to 0.002%, respectively, in the optimized experimental condition. The dispersion in fp and D ranged from 3.2% to 9.5% and from 0.9% to 1.1%, respectively. The mid-thigh of the left leg of four younger (21-30 year old) and four older (60-90 year old) healthy females was studied using the optimized protocol at baseline and at seven time increments occurring every 3.25 min following in-magnet dynamic knee extension exercise performed using a MR-compatible ergometer with a workload of 0.4 bar for 2.5 min. After exercise, both fp and D significantly increased in the rectus femoris (active muscle during exercise) but not in adductor magnus (inactive muscle), reflecting the fact that the local increase in perfusion with both groups showed a maximum value in the second post-exercise time-point. A significantly greater increase in perfusion from the baseline (p < 0.05) was observed in the younger group (37 ± 12.05%) compared with the older group (17.57 ± 15.92%) at the first post-exercise measurement. This work establishes a reliable non-invasive method that can be used to study the effects of aging on dynamic changes in muscle perfusion as they relate to important measures of physical function.


Assuntos
Imagem de Difusão por Ressonância Magnética , Exercício Físico/fisiologia , Hiperemia/fisiopatologia , Movimento (Física) , Músculo Esquelético/fisiologia , Perfusão , Coxa da Perna/fisiologia , Adulto , Idoso , Simulação por Computador , Humanos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA