Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053596

RESUMO

Extracellular RNAs (exRNAs) in biofluids have attracted great interest as potential biomarkers. Although extracellular microRNAs in blood plasma are extensively characterized, extracellular messenger RNA (mRNA) and long non-coding RNA (lncRNA) studies are limited. We report that plasma contains fragmented mRNAs and lncRNAs that are missed by standard small RNA-seq protocols due to lack of 5' phosphate or presence of 3' phosphate. These fragments were revealed using a modified protocol ("phospho-RNA-seq") incorporating RNA treatment with T4-polynucleotide kinase, which we compared with standard small RNA-seq for sequencing synthetic RNAs with varied 5' and 3' ends, as well as human plasma exRNA Analyzing phospho-RNA-seq data using a custom, high-stringency bioinformatic pipeline, we identified mRNA/lncRNA transcriptome fingerprints in plasma, including tissue-specific gene sets. In a longitudinal study of hematopoietic stem cell transplant patients, bone marrow- and liver-enriched exRNA genes were tracked with bone marrow recovery and liver injury, respectively, providing proof-of-concept validation as a biomarker approach. By enabling access to an unexplored realm of mRNA and lncRNA fragments, phospho-RNA-seq opens up new possibilities for plasma transcriptomic biomarker development.


Assuntos
Biomarcadores/sangue , Ácidos Nucleicos Livres/análise , MicroRNAs/sangue , RNA Longo não Codificante/análise , RNA Mensageiro/análise , RNA-Seq/métodos , Biomarcadores/análise , Análise Química do Sangue/métodos , Ácidos Nucleicos Livres/sangue , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/análise , RNA Longo não Codificante/sangue , RNA Mensageiro/sangue , Análise de Sequência de RNA/métodos
2.
Mol Hum Reprod ; 29(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36661332

RESUMO

In addition to their role in protein translation, tRNAs can be cleaved into shorter, biologically active fragments called tRNA fragments (tRFs). Specific tRFs from spermatocytes can propagate metabolic disorders in second generations of mice. Thus, tRFs in germline cells are a mechanism of epigenetic inheritance. It has also been shown that stress and toxins can cause alterations in tRF patterns. We were therefore interested in whether injecting illicit drugs, a major stressor, impacts tRFs in germline cells. We sequenced RNA from spermatocytes and from semen-derived exosomes from people who inject illicit drugs (PWID) and from non-drug using controls, both groups of unknown fertility status. All PWID injected opioids daily, but most also used other illicit drugs. The tRF cleavage products from Gly-GCC tRNA were markedly different between spermatocytes from PWID compared to controls. Over 90% of reads in controls mapped to shorter Gly-GCC tRFs, while in PWID only 45% did. In contrast, only 4.1% of reads in controls mapped to a longer tRFs versus 45.6% in PWID. The long/short tRF ratio was significantly higher in PWID than controls (0.23 versus 0.16, P = 0.0128). We also report differential expression of a group of small nucleolar RNAs (snoRNAs) in semen-derived exosomes, including, among others, ACA14a, U19, and U3-3. Thus, PWID exhibited an altered cleavage pattern of tRNA-Gly-GCC in spermatocytes and an altered cargo of snoRNAs in semen-derived exosomes. Participants were not exclusively using opioids and were not matched with controls in terms of diet, chronic disease, or other stressors, so our finding are not conclusively linked to opioid use. However, all individuals in the PWID group did inject heroin daily. Our study indicates a potential for opioid injection and/or its associated multi-drug use habits and lifestyle changes to influence epigenetic inheritance.


Assuntos
Drogas Ilícitas , Abuso de Substâncias por Via Intravenosa , Masculino , Animais , Camundongos , Analgésicos Opioides , Sêmen/metabolismo , RNA de Transferência
3.
Hum Mol Genet ; 27(24): 4303-4314, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30239724

RESUMO

Polyglutamine (polyQ) repeat diseases are a class of neurodegenerative disorders caused by CAG-repeat expansion. There are diverse cellular mechanisms behind the pathogenesis of polyQ disorders, including transcriptional dysregulation. Interestingly, we find that levels of the long isoform of nuclear paraspeckle assembly transcript 1 (Neat1L) are elevated in the brains of mouse models of spinocerebellar ataxia types 1, 2, 7 and Huntington's disease (HD). Neat1L was also elevated in differentiated striatal neurons derived from HD knock-in mice and in HD patient brains. The elevation was mutant Huntingtin (mHTT) dependent, as knockdown of mHTT in vitro and in vivo restored Neat1L to normal levels. In additional studies, we found that Neat1L is repressed by methyl CpG binding protein 2 (MeCP2) by RNA-protein interaction but not by occupancy of MeCP2 at its promoter. We also found that NEAT1L overexpression protects from mHTT-induced cytotoxicity, while reducing it enhanced mHTT-dependent toxicity. Gene set enrichment analysis of previously published RNA sequencing data from mouse embryonic fibroblasts and cells derived from HD patients shows that loss of NEAT1L impairs multiple cellular functions, including pathways involved in cell proliferation and development. Intriguingly, the genes dysregulated in HD human brain samples overlap with pathways affected by a reduction in NEAT1, confirming the correlation of NEAT1L and HD-induced perturbations. Cumulatively, the role of NEAT1L in polyQ disease model systems and human tissues suggests that it may play a protective role in CAG-repeat expansion diseases.


Assuntos
Doença de Huntington/genética , Proteína 2 de Ligação a Metil-CpG/genética , RNA Longo não Codificante/genética , Ataxias Espinocerebelares/genética , Processamento Alternativo/genética , Animais , Diferenciação Celular/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Técnicas de Introdução de Genes , Humanos , Proteína Huntingtina/genética , Doença de Huntington/fisiopatologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Proteínas de Ligação a RNA/genética , Ataxias Espinocerebelares/fisiopatologia , Expansão das Repetições de Trinucleotídeos/genética
4.
Hum Mol Genet ; 25(22): 4939-4950, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28171541

RESUMO

Substantial variability exists in the presentation of complex neurological disorders, and the study of single nucleotide polymorphisms (SNPs) has shed light on disease mechanisms and pathophysiological variability in some cases. However, the vast majority of disease-linked SNPs have unidentified pathophysiological relevance. Here, we tested the hypothesis that SNPs within the miRNA recognition element (MRE; the region of the target transcript to which the miRNA binds) can impart changes in the expression of those genes, either by enhancing or reducing transcript and protein levels. To test this, we cross-referenced 7,153 miRNA-MRE brain interactions with the SNP database (dbSNP) to identify candidates, and functionally assessed 24 SNPs located in the 3'UTR or the coding sequence (CDS) of targets. For over half of the candidates tested, SNPs either enhanced (4 genes) or disrupted (10 genes) miRNA binding and target regulation. Additionally, SNPs causing a shift from a common to rare codon within the CDS facilitated miRNA binding downstream of the SNP, dramatically repressing target gene expression. The biological activity of the SNPs on miRNA regulation was also confirmed in induced pluripotent stem cell (iPSC) lines. These studies strongly support the notion that SNPs in the 3'UTR or the coding sequence of disease-relevant genes may be important in disease pathogenesis and should be reconsidered as candidate modifiers.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Encéfalo/metabolismo , Bases de Dados Genéticas , Células HEK293 , Humanos , MicroRNAs/metabolismo , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Motivos de Ligação ao RNA
5.
Nucleic Acids Res ; 44(15): 7120-31, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27418678

RESUMO

MicroRNAs (miRs) have emerged as key biological effectors in human health and disease. These small noncoding RNAs are incorporated into Argonaute (Ago) proteins, where they direct post-transcriptional gene silencing via base-pairing with target transcripts. Although miRs have become intriguing biological entities and attractive therapeutic targets, the translational impacts of miR research remain limited by a paucity of empirical miR targeting data, particularly in human primary tissues. Here, to improve our understanding of the diverse roles miRs play in cardiovascular function and disease, we applied high-throughput methods to globally profile miR:target interactions in human heart tissues. We deciphered Ago2:RNA interactions using crosslinking immunoprecipitation coupled with high-throughput sequencing (HITS-CLIP) to generate the first transcriptome-wide map of miR targeting events in human myocardium, detecting 4000 cardiac Ago2 binding sites across >2200 target transcripts. Our initial exploration of this interactome revealed an abundance of miR target sites in gene coding regions, including several sites pointing to new miR-29 functions in regulating cardiomyocyte calcium, growth and metabolism. Also, we uncovered several clinically-relevant interactions involving common genetic variants that alter miR targeting events in cardiomyopathy-associated genes. Overall, these data provide a critical resource for bolstering translational miR research in heart, and likely beyond.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Reagentes de Ligações Cruzadas , Imunoprecipitação , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Cálcio/metabolismo , Cardiomiopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miocárdio/citologia , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade por Substrato
6.
Hum Mol Genet ; 23(7): 1783-93, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24234653

RESUMO

Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.


Assuntos
Regiões 3' não Traduzidas/genética , Elementos Alu/genética , Elementos de DNA Transponíveis/genética , Elementos Nucleotídeos Longos e Dispersos/genética , MicroRNAs/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Linhagem da Célula/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , MicroRNAs/biossíntese , Pan troglodytes
7.
Hum Mol Genet ; 23(10): 2593-603, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24368418

RESUMO

MicroRNAs (miRNAs) have been established as important negative post-transcriptional regulators for gene expression. Within the past decade, miRNAs targeting transcription factors (TFs) has emerged as an important mechanism for gene expression regulation. Here, we tested the hypothesis that in TF 3'UTRs, human-specific single nucleotide change(s) that create novel miRNA recognition elements (MREs) contribute to species-specific differences in TF expression. From several potential human-specific TF MREs, one candidate, a member of the Forkhead Box O (FOXO) subclass in the Forkhead family known as Forkhead Box O1 (FOXO1; FKHR; NM_002015) was tested further. Human FOXO1 contains two sites predicted to confer miR-183-mediated post-transcriptional regulation: one specific to humans and the other conserved. Utilizing dual luciferase expression reporters, we show that only the human FOXO1 3'UTR contains a functional miR-183 site, not found in chimpanzee or mouse 3'untranslated regions (UTRs). Site-directed mutagenesis supports functionality of the human-specific miR-183 site, but not the conserved miR-183 site. Via overexpression and target site protection assays, we show that human FOXO1 is regulated by miR-183, but mouse FOXO1 is not. Finally, FOXO1-regulated cellular phenotypes, including cell invasion and proliferation, are impacted by miR-183 targeting only in human cells. These results provide strong evidence for human-specific gain of TF MREs, a process that may underlie evolutionary differences between phylogenic groups.


Assuntos
Fatores de Transcrição Forkhead/genética , MicroRNAs/genética , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Movimento Celular , Proliferação de Células , Evolução Molecular , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Macaca mulatta/genética , Camundongos , Pan troglodytes/genética
8.
Nucleic Acids Res ; 42(21): 13315-27, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25332397

RESUMO

Huntington's disease is a fatal neurodegenerative disease caused by polyglutamine-expansion in huntingtin (HTT). Recent work showed that gene silencing approaches, including RNA interference (RNAi), improve disease readouts in mice. To advance RNAi to the clinic, we designed miHDS1, with robust knockdown of human HTT and minimized silencing of unintended transcripts. In Rhesus macaque, AAV delivery of miHDS1 to the putamen reduced HTT expression with no adverse effects on neurological status including fine and gross motor skills, no immune activation and no induction of neuropathology out to 6 weeks post injection. Others showed safety of a different HTT-targeting RNAi in monkeys for 6 months. Application of miHDS1 to Huntington's patients requires further safety testing in normal rodents, despite the fact that it was optimized for humans. To satisfy this regulatory requirement, we evaluated normal mice after AAV.miHDS1 injection. In contrast to monkeys, neurological deficits occurred acutely in mice brain and was attributed to off-target silencing through interactions of miHDS1 with the 3'UTR of other transcripts. While we resolved miHDS1 toxicity in mouse brain and maintained miHDS1-silencing efficacy, these studies highlight that optimizing nucleic acid-based medicines for safety in humans presents challenges for safety testing in rodents or other distantly related species.


Assuntos
Encéfalo/efeitos dos fármacos , MicroRNAs/toxicidade , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Animais , Sequência de Bases , Encéfalo/metabolismo , Encefalopatias/induzido quimicamente , Linhagem Celular , Células HEK293 , Humanos , Proteína Huntingtina , Macaca mulatta , Camundongos , MicroRNAs/química , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotídeos , RNA Mensageiro/metabolismo
9.
Nucleic Acids Res ; 41(1): e9, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22941647

RESUMO

RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others' supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2-8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , Software , Algoritmos , Animais , Linhagem Celular , Genoma , Humanos , Camundongos , Transcriptoma
10.
RNA ; 16(3): 495-505, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20075166

RESUMO

MicroRNAs (miRNAs) are RNA sequences of approximately 22 nucleotides that mediate post-transcriptional regulation of specific mRNAs. miRNA sequences are dispersed throughout the genome and are classified as intergenic (between genes) or intronic (embedded into a gene). Intergenic miRNAs are expressed by their own promoter, and until recently, it was supposed that intronic miRNAs are transcribed from their host gene. Here, we performed a genomic analysis of currently known intronic miRNA regions and observed that approximately 35% of intronic miRNAs have upstream regulatory elements consistent with promoter function. Among all intronic miRNAs, 30% have associated Pol II regulatory elements, including transcription start sites, CpG islands, expression sequence tags, and conserved transcription factor binding sites, while 5% contain RNA Pol III regulatory elements (A/B box sequences). We cloned intronic regions encompassing miRNAs and their upstream Pol II (miR-107, miR-126, miR-208b, miR-548f-2, miR-569, and miR-590) or Pol III (miR-566 and miR-128-2) sequences into a promoterless plasmid, and confirmed that miRNA expression occurs independent of host gene transcription. For miR-128-2, a miRNA overexpressed in acute lymphoblastic leukemia, ChIP analysis suggests dual regulation by both intronic (Pol III) and host gene (Pol II) promoters. These data support complex regulation of intronic miRNA expression, and have relevance to disregulation in disease settings.


Assuntos
Íntrons , MicroRNAs/genética , Regiões Promotoras Genéticas , Região 5'-Flanqueadora , Animais , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo
11.
Mol Ther ; 19(12): 2169-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21952166

RESUMO

RNA interference (RNAi) provides an approach for the treatment of many human diseases. However, the safety of RNAi-based therapies can be hampered by the ability of small inhibitory RNAs (siRNAs) to bind to unintended mRNAs and reduce their expression, an effect known as off-target gene silencing. Off-targeting primarily occurs when the seed region (nucleotides 2-8 of the small RNA) pairs with sequences in 3'-UTRs of unintended mRNAs and directs translational repression and destabilization of those transcripts. To date, most therapeutic RNAi sequences are selected primarily for gene silencing efficacy, and later evaluated for safety. Here, in designing siRNAs to treat Huntington's disease (HD), a dominant neurodegenerative disorder, we prioritized selection of sequences with minimal off-targeting potentials (i.e., those with a scarcity of seed complements within all known human 3'-UTRs). We identified new promising therapeutic candidate sequences which show potent silencing in cell culture and mouse brain. Furthermore, we present microarray data demonstrating that off-targeting is significantly minimized by using siRNAs that contain "safe" seeds, an important strategy to consider during preclinical development of RNAi-based therapeutics.


Assuntos
Inativação Gênica , Doença de Huntington/genética , Doença de Huntington/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus/genética , Desenho de Fármacos , Marcação de Genes , Humanos , Técnicas Imunoenzimáticas , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
12.
Hum Mol Genet ; 18(24): 4801-7, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19776031

RESUMO

Animals regulate gene expression at multiple levels, contributing to the complexity of the proteome. Among these regulatory events are post-transcriptional gene silencing, mediated by small non-coding RNAs (e.g. microRNAs), and adenosine-to-inosine (A-to-I) editing, generated by adenosine deaminases that act on double-stranded RNA (ADAR). Recent data suggest that these regulatory processes are connected at a fundamental level. A-to-I editing can affect Drosha processing or directly alter the microRNA (miRNA) sequences responsible for mRNA targeting. Here, we analyzed the previously reported adenosine deaminations occurring in human cDNAs, and asked if there was a relationship between A-to-I editing events in the mRNA 3' untranslated regions (UTRs) and mRNA:miRNA binding. We find significant correlations between A-to-I editing and changes in miRNA complementarities. In all, over 3000 of the 12 723 distinct adenosine deaminations assessed were found to form 7-mer complementarities (known as seed matches) to a subset of human miRNAs. In 200 of the ESTs, we also noted editing within a specific 13 nucleotide motif. Strikingly, deamination of this motif simultaneously creates seed matches to three (otherwise unrelated) miRNAs. Our results suggest the creation of miRNA regulatory sites as a novel function for ADAR activity. Consequently, many miRNA target sites may only be identifiable through examining expressed sequences.


Assuntos
Adenosina Desaminase/metabolismo , Adenosina/metabolismo , MicroRNAs/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/biossíntese , Sequência de Bases , Sítios de Ligação , Desaminação , Humanos , Inosina/metabolismo , Dados de Sequência Molecular , Edição de RNA , Proteínas de Ligação a RNA
13.
Oncotarget ; 12(13): 1214-1229, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34194620

RESUMO

Despite the rising incidence of human papillomavirus related (HPV+) oropharyngeal squamous cell carcinoma (OPSCC), treatment of metastatic disease remains palliative. Even with new treatments such as immunotherapy, response rates are low and can be delayed, while even mild tumor progression in the face of an ineffective therapy can lead to rapid death. Real-time biomarkers of response to therapy could improve outcomes by guiding early change of therapy in the metastatic setting. Herein, we developed and analytically validated a new droplet digital PCR (ddPCR)-based assay for HPV16 circulating tumor DNA (ctDNA) and evaluated plasma HPV16 ctDNA for predicting treatment response in metastatic HPV+ OPSCC. We found that longitudinal changes HPV16 ctDNA correlate with treatment response and that ctDNA responses are observed earlier than conventional imaging (average 70 days, range: 35-166). With additional validation in multi-site studies, this assay may enable early identification of treatment failure, allowing patients to be directed promptly toward clinical trials or alternative therapies.

14.
Front Genet ; 12: 778416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047007

RESUMO

We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.

15.
Mol Ther ; 17(3): 538-47, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088704

RESUMO

RNA interference (RNAi) can be an effective antiviral agent; however, overexpression of RNAi can be toxic through competition with the endogenous microRNA (miRNA) machinery. We used rational design to identify highly potent RNAi that is effective at nontoxic doses. A statistical analysis was conducted to pinpoint thermodynamic characteristics correlated with activity. Sequences were selected that conformed to a consensus internal stability profile (ISP) associated with active RNAi, and RNAi triggers were expressed in the context of an endogenous miRNA. These approaches yielded highly active hepatitis B virus (HBV) RNAi. A statistical analysis found a correlation between activity and nucleation by binding within the seed sequence to accessible regions in the target RNA. Guide strands were selected for favorable strand biasing, but increased strand biasing did not correlate with potency, suggesting a threshold effect. Exogenous short hairpin RNAs (shRNAs), but not miRNAs were previously reported to compete with miRNAs for the miRNA/RNAi machinery. In contrast, we show that exogenous Polymerase III- but not Polymerase II-driven miRNAs compete with exogenous miRNAs, at multiple steps in the miRNA pathway. Exogenous miRNAs also compete with endogenous miR-21. Thus, competition with endogenous miRNAs should be monitored even when using miRNA-based therapeutics. However, potent silencing was achieved at doses where competition was not observed.


Assuntos
Vírus da Hepatite B/genética , Interferência de RNA , Sequência de Bases , Linhagem Celular Tumoral , Humanos , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/genética , Termodinâmica , Transcrição Gênica/genética
16.
Nat Genet ; 50(5): 657-661, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662165

RESUMO

RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.


Assuntos
Interferência de RNA , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Genômica/métodos , Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Interferente Pequeno/genética
17.
Nat Biotechnol ; 36(8): 746-757, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010675

RESUMO

RNA-seq is increasingly used for quantitative profiling of small RNAs (for example, microRNAs, piRNAs and snoRNAs) in diverse sample types, including isolated cells, tissues and cell-free biofluids. The accuracy and reproducibility of the currently used small RNA-seq library preparation methods have not been systematically tested. Here we report results obtained by a consortium of nine labs that independently sequenced reference, 'ground truth' samples of synthetic small RNAs and human plasma-derived RNA. We assessed three commercially available library preparation methods that use adapters of defined sequence and six methods using adapters with degenerate bases. Both protocol- and sequence-specific biases were identified, including biases that reduced the ability of small RNA-seq to accurately measure adenosine-to-inosine editing in microRNAs. We found that these biases were mitigated by library preparation methods that incorporate adapters with degenerate bases. MicroRNA relative quantification between samples using small RNA-seq was accurate and reproducible across laboratories and methods.


Assuntos
MicroRNAs/genética , Análise de Sequência de RNA/métodos , Adenosina/genética , Humanos , Inosina/genética , MicroRNAs/sangue , MicroRNAs/normas , Edição de RNA , Padrões de Referência , Reprodutibilidade dos Testes
18.
Mol Ther Nucleic Acids ; 4: e234, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25849618

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by CAG repeat expansion in exon 1 of huntingtin (HTT). Studies in mouse models of HD with a regulated mutant transgene show that continuous mutant allele expression is required for behavioral and pathological signs; when mutant HTT expression declined, neuronal degeneration improved. To date, it is unknown whether neural cells in the adult human brain can tolerate reduction in both normal and mutant alleles. Thus, it may be important to develop allele-specific silencing approaches. Several siRNA sequences targeting the CAG expanded motif or prevalent single-nucleotide polymorphisms (SNPs) in linkage disequilibrium with the mutant allele have been designed and their selectivity demonstrated in vitro. However, it is unknown whether these allele-specific siRNAs will retain their specificity when expressed from artificial RNAi platforms. Here, we designed CAG- and SNP- targeting artificial miRNAs and demonstrate that some, but not all, retained their selectivity in vitro using an allele-specific reporter system and in vivo in a transgenic mouse model developed to express normal and mutant human HTT alleles.

19.
Neuron ; 81(2): 294-305, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24389009

RESUMO

The orchestration of brain function requires complex gene regulatory networks that are modulated, in part, by microRNAs (miRNAs). These noncoding RNAs associate with argonaute (Ago) proteins in order to direct posttranscriptional gene suppression via base pairing with target transcripts. In order to better understand how miRNAs contribute to human-specialized brain processes and neurological phenotypes, identifying their targets is of paramount importance. Here, we address the latter by profiling Ago2:RNA interactions using HITS-CLIP to generate a transcriptome-wide map of miRNA binding sites in human brain. We uncovered ∼ 7,000 stringent Ago2 binding sites that are highly enriched for conserved sequences corresponding to abundant brain miRNAs. This interactome points to functional miRNA:target pairs across >3,000 genes and represents a valuable resource for accelerating our understanding of miRNA functions in brain. We demonstrate the utility of this map for exploring clinically relevant miRNA binding sites that may facilitate the translation of genetic studies of complex neuropsychiatric diseases into therapeutics.


Assuntos
Sítios de Ligação/genética , Giro do Cíngulo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Córtex Motor/metabolismo , Adulto , Idoso , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autorradiografia , Sequência de Bases , Redes Reguladoras de Genes , Humanos , Imunoprecipitação , Masculino , Camundongos , Pessoa de Meia-Idade , Córtex Motor/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mudanças Depois da Morte , RNA Mensageiro , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA