RESUMO
Decades of poor reproductive success and young-of-the-year survival, combined with adult mortality events, have led to a decline in the smallmouth bass (SMB; Micropterus dolomieu) population in sections of the Potomac River. Previous studies have identified numerous biologic and environmental stressors associated with negative effects on SMB health. To better understand the impact of these stressors, this study was conducted at the confluence of Antietam Creek and the Potomac River from 2013 to 2019 to identify temporal changes associated with SMB reproductive health. Surface water samples were collected and analyzed for over 300 organic contaminants, including pesticides, phytoestrogens, pharmaceuticals, hormones and total estrogenicity (E2Eq). Adult SMB were collected and sampled for multiple endpoints, including gene transcripts associated with reproduction (molecular), histopathology (cellular), and organosomatic indices (tissue). In males, biomarkers of estrogenic endocrine disruption, including testicular oocytes (TO) and plasma vitellogenin (Vtg) were assessed. Numerous agriculture-related contaminants or land use patterns were associated with gene transcript abundance in both male and female SMB. Positive associations between pesticides in the immediate catchment with TO severity and E2Eq with plasma Vtg in males were identified. In males, the prevalence of TO and detectable levels of plasma Vtg, liver vitellogenin transcripts (vtg) and testis vtg were high throughout the study. Peaks of complex mixtures of numerous contaminants occurred during the spring/early summer when spawning and early development occurs and to a lesser extent in fall/winter during recrudescence. Management practices to reduce exposure during these critical and sensitive periods may enhance reproductive health of these economically important sportfishes.
Assuntos
Saúde Reprodutiva , Feminino , Masculino , AnimaisRESUMO
Hyperpigmented melanistic skin lesions (HPMLs) of smallmouth bass Micropterus dolomieu are observed in the Potomac and Susquehanna rivers, Chesapeake Bay watershed, USA. Routine, nonlethal population surveys were conducted at 8 sites on the mainstem Susquehanna River and 9 on the Juniata River, a tributary of the Susquehanna River, between 2012 and 2018, and the prevalence of HPMLs was documented. A total of 4078 smallmouth bass were collected from the mainstem Susquehanna River and 6478 from the Juniata River. Lesions were primarily seen in bass greater than 200 mm, and prevalence in the Susquehanna River (8%) was higher (p < 0.001) than in the Juniata River (2%). As part of ongoing fish health monitoring projects, smallmouth bass were collected at additional sites, primarily tributaries of the Susquehanna (n = 758) and Potomac (n = 545) rivers between 2013 and 2018. Prevalence in the Susquehanna River (13%) was higher (p < 0.001) than the Potomac (3%). Microscopically, HPMLs were characterized by an increased number of melanocytes in the epidermis or within the dermis and epidermis. RNAseq analyses of normal and melanistic skin identified 3 unique sequences in HPMLs. Two were unidentified and the third was a viral helicase (E1). Transcript abundance in 16 normal skin samples and 16 HPMLs showed upregulation of genes associated with melanogenesis and cell proliferation in HPMLs. The E1 transcript was detected in 12 of the 16 melanistic areas but in no samples from normal skin. Further research will be necessary to identify the putative new virus and determine its role in melanocyte proliferation.
Assuntos
Bass , Animais , Baías , RiosRESUMO
Total mercury (THg) was measured in muscle (fillet) and liver tissue of adult smallmouth bass Micropterus dolomieu collected at multiple sites in the Potomac and Susquehanna River drainages within the Chesapeake Bay watershed. Smallmouth bass in these drainages have experienced episodic mortality events, a high prevalence of skin lesions and reproductive endocrine disruption (intersex or testicular oocytes and plasma vitellogenin in males). A multi-level assessment of general and reproductive health including indicators at the organismal, organ, cellular and molecular levels was conducted on adult smallmouth bass during the spring (prespawn) season. Concentrations of THg were correlated with increased visible abnormalities, increased macrophage aggregates and tissue parasite burdens. In male bass positive correlations of THg were observed with plasma vitellogenin and hepatic transcript abundance of estrogen receptor ß1 and androgen receptor α, while there was a negative association with estrogen receptors α and ß2 and androgen receptors ß. In female bass there was a negative correlation between THg and plasma vitellogenin as well as hepatic transcript abundance of vitellogenin, choriogenin, estrogen receptor ß2 and 17ß hydroxysteroid dehydrogenase. Associations of THg concentrations with various biological indicators suggest mercury may be an important environmental stressor contributing to the observed adverse effects in smallmouth bass populations.
Assuntos
Bass , Mercúrio , Poluentes Químicos da Água , Animais , Masculino , Feminino , Bass/fisiologia , Mercúrio/toxicidade , Receptores de Estrogênio , Vitelogeninas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , RiosRESUMO
The Chesapeake Bay is the largest estuary in the United States and its watershed includes river drainages in six states and the District of Columbia. Sportfishing is of major economic interest, however, the rivers within the watershed provide numerous other ecological, recreational, cultural and economic benefits, as well as serving as a drinking water source for millions of people. Consequently, major fish kills and the subsequent finding of estrogenic endocrine disruption (intersex or testicular oocytes and plasma vitellogenin in male fishes) raised public and management concerns. Studies have occurred at various sites within the Bay watershed to document the extent and severity of endocrine disruption, identify risk factors and document temporal and spatial variability. Data from these focal studies, which began in 2004, were used in CART (classification and regression trees) analyses to better identify land use associations and potential management practices that influence estrogenic endocrine disruption. These analyses emphasized the importance of scale (immediate versus upstream catchment) and the complex mixtures of stressors which can contribute to surface water estrogenicity and the associated adverse effects of exposure. Both agricultural (percent cultivated, pesticide application, phytoestrogen cover crops) and developed (population density, road density, impervious surface) land cover showed positive relationships to estrogenic indicators, while percent forest and shrubs generally had a negative association. The findings can serve as a baseline for assessing ongoing restoration and management practices.
Assuntos
Baías , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Masculino , Estudos Retrospectivos , Rios , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
If not managed properly, modern agricultural practices can alter surface and groundwater quality and drinking water resources resulting in potential negative effects on aquatic and terrestrial ecosystems. Exposure to agriculturally derived contaminant mixtures has the potential to alter habitat quality and negatively affect fish and other aquatic organisms. Implementation of conservation practices focused on improving water quality continues to increase particularly in agricultural landscapes throughout the United States. The goal of this study was to determine the consequences of land management actions on the primary drivers of contaminant mixtures in five agricultural watersheds in the Chesapeake Bay, the largest watershed of the Atlantic Seaboard in North America where fish health issues have been documented for two decades. Surface water was collected and analyzed for 301 organic contaminants to determine the benefits of implemented best management practices (BMPs) designed to reduce nutrients and sediment to streams in also reducing contaminants in surface waters. Of the contaminants measured, herbicides (atrazine, metolachlor), phytoestrogens (formononetin, genistein, equol), cholesterol and total estrogenicity (indicator of estrogenic response) were detected frequently enough to statistically compare to seasonal flow effects, landscape variables and BMP intensity. Contaminant concentrations were often positively correlated with seasonal stream flow, although the magnitude of this effect varied by contaminant across seasons and sites. Land-use and other less utilized landscape variables including biosolids, manure and pesticide application and percent phytoestrogen producing crops were inversely related with site-average contaminant concentrations. Increased BMP intensity was negatively related to contaminant concentrations indicating potential co-benefits of BMPs for contaminant reduction in the studied watersheds. The information gained from this study will help prioritize ecologically relevant contaminant mixtures for monitoring and contributes to understanding the benefits of BMPs on improving surface water quality to better manage living resources in agricultural landscapes inside and outside the Chesapeake Bay watershed.
RESUMO
There is an increasing emphasis on effects-based monitoring to document responses associated with exposure to complex mixtures of chemicals, climate change, pathogens, parasites and other environmental stressors in fish populations. For decades aquatic monitoring programs have included the collection of tissues preserved for microscopic pathology. Consequently, formalin-fixed, paraffin-embedded (FFPE) tissue can be an important reservoir of nucleic acids as technologies emerge that utilize molecular endpoints. Despite the cross-linking effects of formalin, its impact on nucleic acid quality and concentration, amplification, and sequencing are not well described. While fresh-frozen tissue is optimal for working with nucleic acids, FFPE samples have been shown to be conducive for molecular studies. Laser capture microdissection (LCM) is one technology which allows for collection of specific regions or cell populations from fresh or preserved specimens with pathological alterations, pathogens, or parasites. In this study, smallmouth bass (Micropterus dolomieu) liver was preserved in three different fixatives, including 10% neutral buffered formalin (NBF), Z-Fix® (ZF), and PAXgene® (PG) for four time periods (24 hr, 48 hr, seven days, and 14 days). Controls consisted of pieces of liver preserved in RNALater® or 95% ethanol. Smallmouth bass were chosen as they are an economically important sportfish and have been utilized as indicators of exposure to endocrine disruptors and other environmental stressors. Small liver sections were cut out with laser microdissection and DNA and RNA were purified and analyzed for nucleic acid concentration and quality. Sanger sequencing and the NanoString nCounter® technology were used to assess the suitability of these samples in downstream molecular techniques. The results revealed that of the formalin fixatives, NBF samples fixed for 24 and 48 hr were superior to ZF samples for both Sanger sequencing and the Nanostring nCounter®. The non-formalin PAXgene® samples were equally successful and they showed greater stability in nucleic acid quality and concentration over longer fixation times. This study demonstrated that small quantities of preserved tissue from smallmouth bass can be utilized in downstream molecular techniques; however, future studies will need to optimize the methods presented here for different tissue types, fish species, and pathological conditions.
Assuntos
Bass/genética , DNA/efeitos dos fármacos , Monitoramento Ambiental/métodos , Fixadores/efeitos adversos , RNA/efeitos dos fármacos , Animais , Clivagem do DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Formaldeído/efeitos adversos , Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Fígado/patologia , Microdissecção , Desnaturação de Ácido Nucleico/efeitos dos fármacos , RNA/isolamento & purificação , Estabilidade de RNA/efeitos dos fármacos , Análise de Sequência de DNA , Fatores de Tempo , Fixação de Tecidos/métodos , West VirginiaRESUMO
Many tasks in image-guided surgery require a clinician to manually position an instrument in space, with respect to a patient, with five or six degrees of freedom (DOF). Displaying the current and desired pose of the object on a 2D display such as a computer monitor is straightforward. However, providing guidance to accurately and rapidly navigate the object in 5-DOF or 6-DOF is challenging. Guidance is typically accomplished by showing distinct orthogonal viewpoints of the workspace, requiring simultaneous alignment in all views. Although such methods are commonly used, they can be quite unintuitive, and it can take a long time to perform an accurate 5-DOF or 6-DOF alignment task. In this article, we describe a method of visually communicating navigation instructions using translational and rotational arrow cues (TRAC) defined in an object-centric frame, while displaying a single principal view that approximates the human's egocentric view of the physical object. The target pose of the object is provided but typically is used only for the initial gross alignment. During the accurate-alignment stage, the user follows the unambiguous arrow commands. In a series of human-subject studies, we show that the TRAC method outperforms two common orthogonal-view methods-the triplanar display, and a sight-alignment method that closely approximates the Acrobot Navigation System-in terms of time to complete 5-DOF and 6-DOF navigation tasks. We also find that subjects can achieve 1 mm and 1° accuracy using the TRAC method with a median completion time of less than 20 seconds.
RESUMO
Investigating the spatiotemporal dynamics of contaminants in surface water is crucial to better understand how introduced chemicals are interacting with and potentially influencing aquatic organisms and environments. Within the Chesapeake Bay Watershed, United States, there are concerns about the potential role of contaminant exposure on fish health. Evidence suggests that exposure to contaminants in surface water is causing immunosuppression and intersex in freshwater fish species. Despite these concerns, there is a paucity of information regarding the complex dynamics of contaminant occurrence and co-occurrence in surface water across both space and time. To address these concerns, we applied a Bayesian hierarchical joint-contaminant model to describe the occurrence and co-occurrence patterns of 28 contaminants and total estrogenicity across six river sites and over three years. We found that seasonal occurrence patterns varied by contaminant, with the highest occurrence probabilities during the spring and summer months. Additionally, we found that the proportion of agricultural landcover in the immediate catchment, as well as stream discharge, did not have a significant effect on the occurrence probabilities of most compounds. Four pesticides (atrazine, metolachlor, fipronil and simazine) co-occurred across sites after accounting for environmental covariates. These results provide baseline information on the contaminant occurrence patterns of several classes of compounds within the Chesapeake Bay Watershed. Understanding the spatiotemporal dynamics of contaminants in surface water is the first step in investigating the effects of contaminant exposure on fisheries and aquatic environments.