Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 9052-9071, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36860006

RESUMO

X-ray grating interferometry CT (GI-CT) is an emerging imaging modality which provides three complementary contrasts that could increase the diagnostic content of clinical breast CT: absorption, phase, and dark-field. Yet, reconstructing the three image channels under clinically compatible conditions is challenging because of severe ill-conditioning of the tomographic reconstruction problem. In this work we propose to solve this problem with a novel reconstruction algorithm that assumes a fixed relation between the absorption and the phase-contrast channel to reconstruct a single image by automatically fusing the absorption and phase channels. The results on both simulations and real data show that, enabled by the proposed algorithm, GI-CT outperforms conventional CT at a clinical dose.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Meios de Contraste , Interferometria , Microscopia de Contraste de Fase
2.
Opt Express ; 30(8): 13847-13863, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472989

RESUMO

Grating interferometry breast computed tomography (GI-BCT) has the potential to provide enhanced soft tissue contrast and to improve visualization of cancerous lesions for breast imaging. However, with a conventional scanning protocol, a GI-BCT scan requires longer scanning time and higher operation complexity compared to conventional attenuation-based CT. This is mainly due to multiple grating movements at every projection angle, so-called phase stepping, which is used to retrieve attenuation, phase, and scattering (dark-field) signals. To reduce the measurement time and complexity and extend the field of view, we have adopted a helical GI-CT setup and present here the corresponding tomographic reconstruction algorithm. This method allows simultaneous reconstruction of attenuation, phase contrast, and scattering images while avoiding grating movements. Experiments on simulated phantom and real initial intensity, visibility and phase maps are provided to validate our method.


Assuntos
Interferometria , Tomografia Computadorizada por Raios X , Algoritmos , Interferometria/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
3.
IEEE Trans Med Imaging ; 43(3): 1033-1044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37856265

RESUMO

Grating interferometry CT (GI-CT) is a promising technology that could play an important role in future breast cancer imaging. Thanks to its sensitivity to refraction and small-angle scattering, GI-CT could augment the diagnostic content of conventional absorption-based CT. However, reconstructing GI-CT tomographies is a complex task because of ill problem conditioning and high noise amplitudes. It has previously been shown that combining data-driven regularization with iterative reconstruction is promising for tackling challenging inverse problems in medical imaging. In this work, we present an algorithm that allows seamless combination of data-driven regularization with quasi-Newton solvers, which can better deal with ill-conditioned problems compared to gradient descent-based optimization algorithms. Contrary to most available algorithms, our method applies regularization in the gradient domain rather than in the image domain. This comes with a crucial advantage when applied in conjunction with quasi-Newton solvers: the Hessian is approximated solely based on denoised data. We apply the proposed method, which we call GradReg, to both conventional breast CT and GI-CT and show that both significantly benefit from our approach in terms of dose efficiency. Moreover, our results suggest that thanks to its sharper gradients that carry more high spatial-frequency content, GI-CT can benefit more from GradReg compared to conventional breast CT. Crucially, GradReg can be applied to any image reconstruction task which relies on gradient-based updates.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Sci Rep ; 14(1): 384, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172504

RESUMO

The multi-scale characterization of building materials is necessary to understand complex mechanical processes, with the goal of developing new more sustainable materials. To that end, imaging methods are often used in materials science to characterize the microscale. However, these methods compromise the volume of interest to achieve a higher resolution. Dark-field (DF) contrast imaging is being investigated to characterize building materials in length scales smaller than the resolution of the imaging system, allowing a direct comparison of features in the nano-scale range and overcoming the scale limitations of the established characterization methods. This work extends the implementation of a dual-phase X-ray grating interferometer (DP-XGI) for DF imaging in a lab-based setup. The interferometer was developed to operate at two different design energies of 22.0 keV and 40.8 keV and was designed to characterize nanoscale-size features in millimeter-sized material samples. The good performance of the interferometer in the low energy range (LER) is demonstrated by the DF retrieval of natural wood samples. In addition, a high energy range (HER) configuration is proposed, resulting in higher mean visibility and good sensitivity over a wider range of correlation lengths in the nanoscale range. Its potential for the characterization of mineral building materials is illustrated by the DF imaging of a Ketton limestone. Additionally, the capability of the DP-XGI to differentiate features in the nanoscale range is proven with the dark-field of Silica nanoparticles at different correlation lengths of calibrated sizes of 106 nm, 261 nm, and 507 nm.

5.
Sci Rep ; 13(1): 2731, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792717

RESUMO

Respiratory diseases are one of the most common causes of death, and their early detection is crucial for prompt treatment. X-ray dark-field radiography (XDFR) is a promising tool to image objects with unresolved micro-structures such as lungs. Using Talbot-Lau XDFR, we imaged inflated porcine lungs together with Polymethylmethacrylat (PMMA) microspheres (in air) of diameter sizes between 20 and 500 [Formula: see text] over an autocorrelation range of 0.8-5.2 [Formula: see text]. The results indicate that the dark-field extinction coefficient of porcine lungs is similar to that of densely-packed PMMA spheres with diameter of [Formula: see text], which is approximately the mean alveolar structure size. We evaluated that, in our case, the autocorrelation length would have to be limited to [Formula: see text] in order to image [Formula: see text]-thick lung tissue without critical visibility reduction (signal saturation). We identify the autocorrelation length to be the critical parameter of an interferometer that allows to avoid signal saturation in clinical lung dark-field imaging.


Assuntos
Pulmão , Polimetil Metacrilato , Animais , Suínos , Pulmão/diagnóstico por imagem , Radiografia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA