Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Hepatology ; 77(2): 512-529, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036223

RESUMO

BACKGROUND AND AIMS: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real-world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. APPROACH AND RESULTS: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event-free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18-year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver-related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and <10.0 mg/dl had a 4.1-fold (95% confidence interval [CI], 1.6-10.8), and those ≥10.0 mg/dl had an 8.0-fold (95% CI, 3.4-18.4) increased risk of developing CEPH compared with those <5.0 mg/dl. Median TB levels between ≥5.0 and <10.0 mg/dl and >10.0 mg/dl were associated with a 4.8 (95% CI, 2.4-9.7) and 15.6 (95% CI, 8.7-28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver ( p < 0.001). CONCLUSIONS: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision-making and in the evaluation of therapies.


Assuntos
Síndrome de Alagille , Colestase , Hipertensão Portal , Humanos , Criança , Masculino , Feminino , Síndrome de Alagille/epidemiologia , Estudos Retrospectivos , Hipertensão Portal/etiologia
2.
Hum Mutat ; 43(11): 1493-1494, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116036

RESUMO

This special issue of Human Mutation focuses on Innovations in Genomic Diagnostics. The increasing interest in genomic medicine, and the growing possibilities for treatment and management of genetic disease, make complete and accurate diagnosis mission critical. This issue describes leading-edge technologies with emerging utility for genomic diagnostics. Genomic testing has dramatically evolved as a result of advances in technology, data analytics, and the continuing pace of disease gene discovery. Since 2011, clinical laboratories have increasingly employed next-generation sequencing-based tests in addition to historical techniques to identify a spectrum of germline and somatic variants implicated in human disease. However, common testing platforms have known limitations, including failure to detect disease-causing variants in certain regions, inability to identify all variant types, variant phasing, measuring epigenetic changes, and ongoing challenges with variant interpretation. Innovative solutions are emerging, including increasingly rapid genome sequencing, long-read sequencing, clinical RNA sequencing, epigenomic profiling, facial phenotyping, and an array of computational tools for variant identification and interpretation.


Assuntos
Genoma Humano , Genômica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Sequenciamento do Exoma
3.
Hum Mutat ; 43(12): 1837-1843, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35870179

RESUMO

Synonymous variants have been shown to alter the correct splicing of pre-mRNAs and generate disease-causing transcripts. These variants are not an uncommon etiology of genetic disease; however, they are frequently overlooked during genetic testing in the absence of functional and clinical data. Here, we describe the occurrence of a synonymous variant [NM_005422.4 (TECTA):c.327C>T, p.(Gly109=)] in seven individuals with hearing loss from six unrelated families. The variant is not located near exonic/intronic boundaries but is predicted to impact splicing by activating a cryptic splicing donor site in exon 4 of TECTA. In vitro minigene assays show that the variant disrupts the reading frame of the canonical transcript, which is predicted to cause a premature termination codon 48 amino acids downstream of the variant, leading to nonsense-mediated decay. The variant is present in population databases, predominantly in Latinos of African ancestry, but is rare in other ethnic groups. Our findings suggest that this synonymous variant is likely pathogenic for TECTA-associated autosomal recessive hearing loss and seems to have arisen as a founder variant in this specific Latino subpopulation. This study demonstrates that synonymous variants need careful splicing assessment and support from additional testing methodologies to determine their clinical impact.


Assuntos
Surdez , Perda Auditiva , Humanos , Sítios de Splice de RNA , Splicing de RNA/genética , Perda Auditiva/genética , Surdez/genética , Éxons/genética , Proteínas da Matriz Extracelular/genética , Proteínas Ligadas por GPI/genética
4.
Mol Genet Metab ; 135(1): 93-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969639

RESUMO

Mitochondrial disease diagnosis requires interrogation of both nuclear and mitochondrial (mtDNA) genomes for single-nucleotide variants (SNVs) and copy number alterations, both in the proband and often maternal relatives, together with careful phenotype correlation. We developed a comprehensive mtDNA sequencing test ('MitoGenome') using long-range PCR (LR-PCR) to amplify the full length of the mtDNA genome followed by next generation sequencing (NGS) to accurately detect SNVs and large-scale mtDNA deletions (LSMD), combined with droplet digital PCR (ddPCR) for LSMD heteroplasmy quantification. Overall, MitoGenome tests were performed on 428 samples from 394 patients with suspected or confirmed mitochondrial disease. The positive yield was 11% (43/394), including 34 patients with pathogenic or likely pathogenic SNVs (the most common being m.3243A > G in 8/34 (24%) patients), 8 patients with single LSMD, and 3 patients with multiple LSMD exceeding 10% heteroplasmy levels. Two patients with both LSMD and pathogenic SNV were detected. Overall, this LR-PCR/NGS assay provides a highly accurate and comprehensive diagnostic method for simultaneous mtDNA SNV detection at heteroplasmy levels as low as 1% and LSMD detection at heteroplasmy levels below 10%. Inclusion of maternal samples for variant classification and ddPCR to quantify LSMD heteroplasmy levels further enables accurate pathogenicity assessment and clinical correlation interpretation of mtDNA genome sequence variants and copy number alterations.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética
5.
Gastroenterology ; 159(3): 1068-1084.e2, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32505743

RESUMO

BACKGROUND & AIMS: Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS: We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS: Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION: Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.


Assuntos
Ductos Biliares/patologia , Atresia Biliar/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Oxirredução/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Animais Geneticamente Modificados , Benzodioxóis/toxicidade , Ductos Biliares/citologia , Ductos Biliares/efeitos dos fármacos , Atresia Biliar/induzido quimicamente , Atresia Biliar/genética , Atresia Biliar/patologia , Linhagem Celular , GMP Cíclico/agonistas , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Sequestradores de Radicais Livres/uso terapêutico , Glutationa/metabolismo , Humanos , Proteostase/genética , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
6.
Genet Med ; 23(2): 323-330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33077891

RESUMO

PURPOSE: Detection of all major classes of genomic variants in a single test would decrease cost and increase the efficiency of genomic diagnostics. Genome sequencing (GS) has the potential to provide this level of comprehensive detection. We sought to demonstrate the utility of GS in the molecular diagnosis of 18 patients with clinically defined Alagille syndrome (ALGS), who had a negative or inconclusive result by standard-of-care testing. METHODS: We performed GS on 16 pathogenic variant-negative probands and two probands with inconclusive results (of 406 ALGS probands) and analyzed the data for sequence, copy-number, and structural variants in JAG1 and NOTCH2. RESULTS: GS identified four novel pathogenic alterations including a copy-neutral inversion, a partial deletion, and a promoter variant in JAG1, and a partial NOTCH2 deletion, for an additional diagnostic yield of 0.9%. Furthermore, GS resolved two complex rearrangements, resulting in identification of a pathogenic variant in 97.5% (n = 396/406) of patients after GS. CONCLUSION: GS provided an increased diagnostic yield for individuals with clinically defined ALGS who had prior negative or incomplete genetic testing by other methods. Our results show that GS can detect all major classes of variants and has potential to become a single first-tier diagnostic test for Mendelian disorders.


Assuntos
Síndrome de Alagille , Síndrome de Alagille/diagnóstico , Síndrome de Alagille/genética , Sequência de Bases , Mapeamento Cromossômico , Testes Genéticos , Humanos , Proteína Jagged-1/genética
7.
Am J Med Genet A ; 185(3): 719-731, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369123

RESUMO

Alagille syndrome (ALGS) is a multisystem autosomal dominant developmental disorder caused predominantly by pathogenic variants in JAGGED1 (JAG1), and also by pathogenic variants in NOTCH2 in a much smaller number of individuals. Clinical presentation is highly variable and includes liver, heart, eye, skeleton, and facial abnormalities, with a subset of individuals also presenting with kidney, vascular, and central nervous system phenotypes. Hepatocellular carcinoma (HCC) is a rare complication of ALGS, though little is known about its incidence or etiology among affected individuals. Previous reports have identified HCC occurrence in both pediatric and adult cases of ALGS. We present a case report of HCC in a 58-year-old woman with a pathogenic JAG1 variant and no overt hepatic features of ALGS. Through a comprehensive literature review, we compile all reported pediatric and adult cases, and further highlight one previously reported case of HCC onset in an adult ALGS patient without any hepatic disease features, similar to our own described patient. Our case report and literature review suggest that ALGS-causing variants could confer risk for developing HCC regardless of phenotypic severity and highlight a need for a cancer screening protocol that would enable early detection and treatment in this at-risk population.


Assuntos
Síndrome de Alagille/complicações , Carcinoma Hepatocelular/etiologia , Proteína Jagged-1/genética , Neoplasias Hepáticas/etiologia , Mutação , Receptor Notch2/genética , Síndrome de Alagille/genética , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Prognóstico , Literatura de Revisão como Assunto
8.
PLoS Genet ; 14(8): e1007532, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102696

RESUMO

Biliary atresia (BA) is a rare pediatric cholangiopathy characterized by fibrosclerosing obliteration of the extrahepatic bile ducts, leading to cholestasis, fibrosis, cirrhosis, and eventual liver failure. The etiology of BA remains unknown, although environmental, inflammatory, infectious, and genetic risk factors have been proposed. We performed a genome-wide association study (GWAS) in a European-American cohort of 343 isolated BA patients and 1716 controls to identify genetic loci associated with BA. A second GWAS was performed in an independent European-American cohort of 156 patients with BA and other extrahepatic anomalies and 212 controls to confirm the identified candidate BA-associated SNPs. Meta-analysis revealed three genome-wide significant BA-associated SNPs on 2p16.1 (rs10865291, rs6761893, and rs727878; P < 5 ×10-8), located within the fifth intron of the EFEMP1 gene, which encodes a secreted extracellular protein implicated in extracellular matrix remodeling, cell proliferation, and organogenesis. RNA expression analysis showed an increase in EFEMP1 transcripts from human liver specimens isolated from patients with either BA or other cholestatic diseases when compared to normal control liver samples. Immunohistochemistry demonstrated that EFEMP1 is expressed in cholangiocytes and vascular smooth muscle cells in liver specimens from patients with BA and other cholestatic diseases, but it is absent from cholangiocytes in normal control liver samples. Efemp1 transcripts had higher expression in cholangiocytes and portal fibroblasts as compared with other cell types in normal rat liver. The identification of a novel BA-associated locus, and implication of EFEMP1 as a new BA candidate susceptibility gene, could provide new insights to understanding the mechanisms underlying this severe pediatric disorder.


Assuntos
Atresia Biliar/diagnóstico , Atresia Biliar/genética , Cromossomos Humanos Par 2/genética , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Animais , Criança , Etnicidade/genética , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Técnicas de Genotipagem , Humanos , Fígado/metabolismo , Modelos Logísticos , Masculino , Músculo Liso Vascular/citologia , Organogênese , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ratos
9.
Hum Mutat ; 41(5): 973-982, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944481

RESUMO

Gastrointestinal motility disorders include a spectrum of mild to severe clinical phenotypes that are caused by smooth muscle dysfunction. We investigated the genetic etiology of severe esophageal, gastric, and colonic dysmotility in two unrelated families with autosomal dominant disease presentation. Using exome sequencing, we identified a 2 base pair insertion at the end of the myosin heavy chain 11 (MYH11) gene in all affected members of Family 1 [NM_001040113:c.5819_5820insCA(p.Gln1941Asnfs*91)] and a 1 base pair deletion at the same genetic locus in Proband 2 [NM_001040113:c.5819del(p.Pro1940Hisfs*91)]. Both variants are predicted to result in a similarly elongated protein product. Heterozygous dominant negative MYH11 pathogenic variants have been associated with thoracic aortic aneurysm and dissection while biallelic null alleles have been associated with megacystis microcolon intestinal hypoperistalsis syndrome. This report highlights heterozygous protein-elongating MYH11 variants affecting the SM2 isoforms of MYH11 as a cause for severe gastrointestinal dysmotility, and we hypothesize that the mechanistic pathogenesis of this disease, dominant hypercontractile loss-of-function, is distinct from those implicated in other diseases involving MYH11 dysfunction.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Mutação , Cadeias Pesadas de Miosina/genética , Fenótipo , Adulto , Criança , Análise Mutacional de DNA , Eletromiografia , Endoscopia do Sistema Digestório , Transtornos da Motilidade Esofágica/diagnóstico , Transtornos da Motilidade Esofágica/genética , Feminino , Gastroparesia/diagnóstico , Gastroparesia/genética , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla , Humanos , Lactente , Enteropatias/diagnóstico , Enteropatias/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Radiografia , Síndrome , Adulto Jovem
10.
Genet Med ; 22(11): 1743-1757, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32661356

RESUMO

Mosaicism denotes an individual who has at least two populations of cells with distinct genotypes that are derived from a single fertilized egg. Genetic variation among the cell lines can involve whole chromosomes, structural or copy-number variants, small or single-nucleotide variants, or epigenetic variants. The mutational events that underlie mosaic variants occur during mitotic cell divisions after fertilization and zygote formation. The initiating mutational event can occur in any types of cell at any time in development, leading to enormous variation in the distribution and phenotypic effect of mosaicism. A number of classification proposals have been put forward to classify genetic mosaicism into categories based on the location, pattern, and mechanisms of the disease. We here propose a new classification of genetic mosaicism that considers the affected tissue, the pattern and distribution of the mosaicism, the pathogenicity of the variant, the direction of the change (benign to pathogenic vs. pathogenic to benign), and the postzygotic mutational mechanism. The accurate and comprehensive categorization and subtyping of mosaicisms is important and has potential clinical utility to define the natural history of these disorders, tailor follow-up frequency and interventions, estimate recurrence risks, and guide therapeutic decisions.


Assuntos
Variações do Número de Cópias de DNA , Mosaicismo , Análise Mutacional de DNA , Humanos , Mutação , Software
11.
Hepatology ; 70(3): 899-910, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664273

RESUMO

Biliary atresia (BA) is the most common cause of end-stage liver disease in children and the primary indication for pediatric liver transplantation, yet underlying etiologies remain unknown. Approximately 10% of infants affected by BA exhibit various laterality defects (heterotaxy) including splenic abnormalities and complex cardiac malformations-a distinctive subgroup commonly referred to as the biliary atresia splenic malformation (BASM) syndrome. We hypothesized that genetic factors linking laterality features with the etiopathogenesis of BA in BASM patients could be identified through whole-exome sequencing (WES) of an affected cohort. DNA specimens from 67 BASM subjects, including 58 patient-parent trios, from the National Institute of Diabetes and Digestive and Kidney Diseases-supported Childhood Liver Disease Research Network (ChiLDReN) underwent WES. Candidate gene variants derived from a prespecified set of 2,016 genes associated with ciliary dysgenesis and/or dysfunction or cholestasis were prioritized according to pathogenicity, population frequency, and mode of inheritance. Five BASM subjects harbored rare and potentially deleterious biallelic variants in polycystic kidney disease 1 like 1 (PKD1L1), a gene associated with ciliary calcium signaling and embryonic laterality determination in fish, mice, and humans. Heterozygous PKD1L1 variants were found in 3 additional subjects. Immunohistochemical analysis of liver from the one BASM subject available revealed decreased PKD1L1 expression in bile duct epithelium when compared to normal livers and livers affected by other noncholestatic diseases. Conclusion: WES identified biallelic and heterozygous PKD1L1 variants of interest in 8 BASM subjects from the ChiLDReN data set; the dual roles for PKD1L1 in laterality determination and ciliary function suggest that PKD1L1 is a biologically plausible, cholangiocyte-expressed candidate gene for the BASM syndrome.


Assuntos
Anormalidades Múltiplas/genética , Atresia Biliar/genética , Proteínas de Membrana/genética , Doenças Renais Policísticas/genética , Baço/anormalidades , Anormalidades Múltiplas/patologia , Atresia Biliar/patologia , Criança , Bases de Dados Factuais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Renais Policísticas/patologia , Estudos Retrospectivos , Síndrome , Sequenciamento do Exoma
12.
Hum Mutat ; 40(12): 2197-2220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343788

RESUMO

Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Receptor Notch2/genética , Síndrome de Alagille/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Proteína Jagged-1/metabolismo , Masculino , Taxa de Mutação , Linhagem , Receptor Notch2/metabolismo
13.
Genet Med ; 21(5): 1100-1110, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287922

RESUMO

PURPOSE: Clinical sequencing emerging in health care may result in secondary findings (SFs). METHODS: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions. RESULTS: The overall adjusted prevalence of SFs in the ACMG 56 genes across the CSER consortium was 1.7%. Initially 32% of the family histories were positive, and post disclosure, this increased to 48%. The average cost of follow-up medical actions per finding up to a 1-year period was $128 (observed, range: $0-$678) and $421 (recommended, range: $141-$1114). Case reports revealed variability in the frequency of and follow-up on medical recommendations patients received associated with each SF gene-condition pair. Participants did not report adverse psychosocial impact associated with receiving SFs; this was corroborated by 18 participant (or parent) interviews. All interviewed participants shared findings with relatives and reported that relatives did not pursue additional testing or care. CONCLUSION: Our results suggest that disclosure of SFs shows little to no adverse impact on participants and adds only modestly to near-term health-care costs; additional studies are needed to confirm these findings.


Assuntos
Testes Genéticos/economia , Achados Incidentais , Sequenciamento Completo do Genoma/ética , Adulto , Tomada de Decisões/ética , Revelação , Exoma , Feminino , Testes Genéticos/ética , Testes Genéticos/normas , Genômica/métodos , Custos de Cuidados de Saúde , Conhecimentos, Atitudes e Prática em Saúde , Pessoal de Saúde , Sequenciamento de Nucleotídeos em Larga Escala/ética , Humanos , Intenção , Masculino , Pacientes , Prevalência , Sequenciamento Completo do Genoma/economia
15.
Nat Rev Genet ; 14(5): 307-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594909

RESUMO

Genomic technologies, including next-generation sequencing (NGS) and single-nucleotide polymorphism (SNP) microarrays, have provided unprecedented opportunities to assess genomic variation among, and increasingly within, individuals. It has long been known that cancer is a mosaic genetic disorder, but mosaicism is now apparent in a diverse range of other clinical disorders, as indicated by their tissue distributions and inheritance patterns. Recent technical advances have uncovered the causative mosaic variant underlying many of these conditions and have provided insight into the pervasiveness of mosaicism in normal individuals. Here, we discuss the clinical and molecular classes of mosaicism, their detection and the biological insights gained from these studies.


Assuntos
Genoma Humano , Genômica/métodos , Mosaicismo , Deleção Cromossômica , Citogenética/métodos , Variações do Número de Cópias de DNA , Humanos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
16.
Am J Hum Genet ; 97(1): 6-21, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140447

RESUMO

In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education.


Assuntos
Testes Genéticos/ética , Testes Genéticos/legislação & jurisprudência , Testes Genéticos/tendências , Genética/história , Genômica/métodos , Consentimento Informado por Menores/psicologia , Adolescente , Criança , Triagem de Portadores Genéticos , Genômica/ética , História do Século XX , História do Século XXI , Humanos , Recém-Nascido , Análise em Microsséries/métodos , Análise em Microsséries/tendências , Farmacogenética/métodos
17.
Genet Med ; 20(12): 1663-1676, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29907799

RESUMO

PURPOSE: Hearing loss (HL) is the most common sensory disorder in children. Prompt molecular diagnosis may guide screening and management, especially in syndromic cases when HL is the single presenting feature. Exome sequencing (ES) is an appealing diagnostic tool for HL as the genetic causes are highly heterogeneous. METHODS: ES was performed on a prospective cohort of 43 probands with HL. Sequence data were analyzed for primary and secondary findings. Capture and coverage analysis was performed for genes and variants associated with HL. RESULTS: The diagnostic rate using ES was 37.2%, compared with 15.8% for the clinical HL panel. Secondary findings were discovered in three patients. For 247 genes associated with HL, 94.7% of the exons were targeted for capture and 81.7% of these exons were covered at 20× or greater. Further analysis of 454 randomly selected HL-associated variants showed that 89% were targeted for capture and 75% were covered at a read depth of at least 20×. CONCLUSION: ES has an improved yield compared with clinical testing and may capture diagnoses not initially considered due to subtle clinical phenotypes. Technical challenges were identified, including inadequate capture and coverage of HL genes. Additional considerations of ES include secondary findings, cost, and turnaround time.


Assuntos
Sequenciamento do Exoma , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Patologia Molecular , Pré-Escolar , Exoma/genética , Feminino , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
18.
Am J Hematol ; 93(1): 8-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960434

RESUMO

Inherited platelet disorders (IPD) are a heterogeneous group of rare disorders that affect platelet number and function and often predispose to other significant medical complications. In spite of the identification of over 50 IPD disease-associated genes, a molecular diagnosis is only identified in a minority (10%) of affected patients without a clinically suspected etiology. We studied a cohort of 21 pediatric patients with suspected IPDs by exome sequencing (ES) to: (1) examine the performance of the exome test for IPD genes, (2) determine if this exome-wide diagnostic test provided a higher diagnostic yield than has been previously reported, (3) to evaluate the frequency of variants of uncertain significance identified, and (4) to identify candidate variants for functional evaluation in patients with an uncertain or negative diagnosis. We established a high priority gene list of 53 genes, evaluated exome capture kit performance, and determined the coverage for these genes and disease-related variants. We identified likely disease causing variants in 5 of the 21 probands (23.8%) and variants of uncertain significance in 52% of patients studied. In conclusion, ES has the potential to molecularly diagnose causes of IPD, and to identify candidate genes for functional evaluation. Robust exome sequencing also requires that coverage of genes known to be associated with clinical findings of interest need to be carefully examined and supplemented if necessary. Clinicians who undertake ES should understand the limitations of the test and the full significance of results that may be returned.


Assuntos
Transtornos Plaquetários/diagnóstico , Predisposição Genética para Doença/genética , Análise de Sequência de DNA/métodos , Transtornos Plaquetários/genética , Criança , Exoma , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
19.
Prenat Diagn ; 38(1): 26-32, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345240

RESUMO

Clinical diagnostic laboratories are producing next-generation sequencing-based test results that are becoming increasingly incorporated into patient care. Whole genome and exome sequencing on fetal material derived from amniocytes, chorionic villi, or products of conception is starting to be offered clinically in specialized centers, but it has not yet become routine practice. The technical, interpretation, and ethical challenges are greatest in the area of prenatal medicine because the fetus has a limited health history, and the physical examination is only indirectly available via prenatal sonography. Here, we provide an overview of these challenges and highlight the clinical utility, reporting, and counseling issues associated with prenatal DNA sequencing. Future considerations are also discussed. © 2017 John Wiley & Sons, Ltd.


Assuntos
Diagnóstico Pré-Natal , Sequenciamento Completo do Genoma , Técnicas de Laboratório Clínico , Feminino , Aconselhamento Genético , Humanos , Gravidez
20.
Genet Med ; 19(5): 575-582, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27811861

RESUMO

PURPOSE: While the diagnostic success of genomic sequencing expands, the complexity of this testing should not be overlooked. Numerous laboratory processes are required to support the identification, interpretation, and reporting of clinically significant variants. This study aimed to examine the workflow and reporting procedures among US laboratories to highlight shared practices and identify areas in need of standardization. METHODS: Surveys and follow-up interviews were conducted with laboratories offering exome and/or genome sequencing to support a research program or for routine clinical services. The 73-item survey elicited multiple choice and free-text responses that were later clarified with phone interviews. RESULTS: Twenty-one laboratories participated. Practices highly concordant across all groups included consent documentation, multiperson case review, and enabling patient opt-out of incidental or secondary findings analysis. Noted divergence included use of phenotypic data to inform case analysis and interpretation and reporting of case-specific quality metrics and methods. Few laboratory policies detailed procedures for data reanalysis, data sharing, or patient access to data. CONCLUSION: This study provides an overview of practices and policies of experienced exome and genome sequencing laboratories. The results enable broader consideration of which practices are becoming standard approaches, where divergence remains, and areas of development in best practice guidelines that may be helpful.Genet Med advance online publication 03 Novemeber 2016.


Assuntos
Testes Genéticos/métodos , Laboratórios/normas , Análise de Sequência de DNA/métodos , Revelação , Testes Genéticos/normas , Humanos , Achados Incidentais , Disseminação de Informação , Laboratórios/ética , Guias de Prática Clínica como Assunto , Relatório de Pesquisa , Tamanho da Amostra , Análise de Sequência de DNA/normas , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA