Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 114(5): 1729-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673078

RESUMO

Protective immunity induced by the infective sporozoite stage of Theileria parva indicates a potential role for antibodies directed against conserved serologically reactive regions of the major sporozoite surface antigen p67 in vaccination to control the parasite. We have examined the allelic variation and determined the extent of B cell epitope polymorphism of the gene encoding p67 among field isolates originating from cattle exposed to infected ticks in the Marula area of the rift valley in central Kenya where the African cape buffalo (Syncerus caffer) and cattle co-graze. In the first of two closely juxtaposed epitope sequences in the central region of the p67 protein, an in-frame deletion of a seven-amino acid segment results in a truncation that was observed in parasites derived from cattle that co-grazed with buffalo. In contrast, the variation in the second epitope was primarily due to nonsynonymous substitutions, resulting in relatively low overall amino acid conservation in this segment of the protein. We also observed polymorphism in the region of the protein adjacent to the two defined epitopes, but this was not sufficient to provide statistically significant evidence for positive selection. The data indicates that B cell epitopes previously identified within the p67 gene are polymorphic within the Marula field isolates. Given the complete sequence identity of the p67 gene in all previously characterized T. parva isolates that are transmissible between cattle by ticks, the diversity observed in p67 from the Marula isolates in combination with the clinical reaction of the infected cattle is consistent with them originating from ticks that had acquired T. parva from buffalo.


Assuntos
Antígenos de Protozoários/genética , Doenças dos Bovinos/prevenção & controle , Epitopos de Linfócito B/genética , Evolução Molecular , Theileria parva/genética , Alelos , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/imunologia , Búfalos , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Epitopos de Linfócito B/imunologia , Mutação INDEL , Quênia , Dados de Sequência Molecular , Alinhamento de Sequência , Esporozoítos/imunologia , Theileria parva/classificação , Carrapatos/parasitologia
2.
BMC Genomics ; 13: 503, 2012 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22998600

RESUMO

BACKGROUND: Theileria parva is a tick-borne protozoan parasite, which causes East Coast Fever, a disease of cattle in sub-Saharan Africa. Like Plasmodium falciparum, the parasite undergoes a transient diploid life-cycle stage in the gut of the arthropod vector, which involves an obligate sexual cycle. As assessed using low-resolution VNTR markers, the crossover (CO) rate in T. parva is relatively high and has been reported to vary across different regions of the genome; non-crossovers (NCOs) and CO-associated gene conversions have not yet been characterised due to the lack of informative markers. To examine all recombination events at high marker resolution, we sequenced the haploid genomes of two parental strains, and two recombinant clones derived from ticks fed on cattle that had been simultaneously co-infected with two different parasite isolates. RESULTS: By comparing the genome sequences, we were able to genotype over 64 thousand SNP markers with an average spacing of 127 bp in the two progeny clones. Previously unrecognized COs in sub-telomeric regions were detected. About 50% of CO breakpoints were accompanied by gene conversion events. Such a high fraction of COs accompanied by gene conversions demonstrated the contributions of meiotic recombination to the diversity and evolutionary success of T. parva, as the process not only redistributed existing genetic variations, but also altered allelic frequencies. Compared to COs, NCOs were more frequently observed and more uniformly distributed across the genome. In both progeny clones, genomic regions with more SNP markers had a reduced frequency of COs or NCOs, suggesting that the sequence divergence between the parental strains was high enough to adversely affect recombination frequencies. Intra-species polymorphism analysis identified 81 loci as likely to be under selection in the sequenced genomes. CONCLUSIONS: Using whole genome sequencing of two recombinant clones and their parents, we generated maps of COs, NCOs, and CO-associated gene conversion events for T. parva. The data comprises one of the highest-resolution genome-wide analyses of the multiple outcomes of meiotic recombination for this pathogen. The study also demonstrates the usefulness of high throughput sequencing typing for detailed analysis of recombination in organisms in which conventional genetic analysis is technically difficult.


Assuntos
Doenças dos Bovinos/parasitologia , DNA de Protozoário/genética , Theileria parva/genética , Carrapatos/parasitologia , Animais , Vetores Artrópodes/parasitologia , Sequência de Bases , Bovinos , Mapeamento Cromossômico , Troca Genética , Conversão Gênica , Frequência do Gene , Variação Genética , Genótipo , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA , Theileria parva/isolamento & purificação , Theileriose/genética , Theileriose/parasitologia
3.
Transbound Emerg Dis ; 67 Suppl 1: 88-98, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32174043

RESUMO

The live infection and treatment (ITM) vaccination procedure using the trivalent Muguga cocktail is increasingly being used to control East Coast fever, with potential implications for Theileria parva population genetic structure in the field. Transmission of the Kiambu V T. parva component to unvaccinated cattle has previously been described in Uganda. We monitored the T. parva carrier state in vaccinated and control animals on a farm in West Kenya where an ITM stabilate derived from the Kenyan T. parva Marikebuni stock was evaluated for field efficacy. A nested PCR-based Marikebuni-specific marker identified a carrier state in nine of ten vaccinated animals, detectable for a period of two years. We used 22 variable number tandem repeat (VNTR) markers to determine multilocus genotypes (MLGs) of 19 T. parva schizont-infected lymphocyte isolates derived from cattle and field ticks. Two isolates from unimmunized cattle were identical to the Marikebuni vaccination stock. Two cattle isolates were identical to a Muguga cocktail component Kiambu V. Seven isolates from ticks exhibited MLGs that were identical to the Serengeti/Muguga vaccine stocks. Six cattle and two tick-derived stocks exhibited unique MLGs. The data strongly suggest transmission of immunizing genotypes, from Marikebuni vaccine-induced carrier cattle to unimmunized cattle. It is possible that genotypes similar to those in the Muguga cocktail are present in the field in Western Kenya. An alternative hypothesis is that these parasites may have originated from vaccine trial sites in Eastern Uganda. If correct, this suggests that T. parva stocks used for immunization can potentially be disseminated 125 km beyond the immediate vaccination site. Regardless of their origin, the data provide evidence that genotypes similar to those in the Muguga cocktail are circulating in the field in East Africa, alleviating concerns about dissemination of 'alien' T. parva germplasm through live vaccination.


Assuntos
Doenças dos Bovinos/parasitologia , Imunização/veterinária , Theileria parva/genética , Theileriose/parasitologia , Doenças Transmitidas por Carrapatos/parasitologia , Carrapatos/parasitologia , Vacinação/veterinária , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/transmissão , Genótipo , Quênia/epidemiologia , Tipagem de Sequências Multilocus/veterinária , Reação em Cadeia da Polimerase/veterinária , Theileria parva/imunologia , Theileriose/prevenção & controle , Theileriose/transmissão , Doenças Transmitidas por Carrapatos/prevenção & controle , Doenças Transmitidas por Carrapatos/transmissão , Uganda , Vacinas Atenuadas/imunologia
4.
PLoS One ; 6(4): e19015, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559495

RESUMO

BACKGROUND: Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. CONCLUSIONS/SIGNIFICANCE: The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/parasitologia , Theileria parva/genética , Theileriose/parasitologia , Animais , Búfalos , Bovinos , Linhagem Celular , Epitopos/química , Evolução Molecular , Variação Genética , Genótipo , Fases de Leitura Aberta , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA