Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35429436

RESUMO

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos
2.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33991487

RESUMO

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Humanos , Mutação/genética , Sequenciamento Completo do Genoma/métodos
3.
Nature ; 607(7918): 351-355, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584773

RESUMO

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Assuntos
COVID-19 , Proteção Cruzada , SARS-CoV-2 , Vacinação , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteção Cruzada/imunologia , Citocinas , Humanos , Camundongos , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos
4.
J Immunol ; 212(7): 1129-1141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363226

RESUMO

In contrast to the "helper" activities of most CD4+ T effector subsets, CD4+ cytotoxic T lymphocytes (CD4-CTLs) perform functions normally associated with CD8+ T and NK cells. Specifically, CD4-CTLs secrete cytotoxic molecules and directly target and kill compromised cells in an MHC class II-restricted fashion. The functions of these cells have been described in diverse immunological contexts, including their ability to provide protection during antiviral and antitumor responses, as well as being implicated in autoimmunity. Despite their significance to human health, the complete mechanisms that govern their programming remain unclear. In this article, we identify the Ikaros zinc finger transcription factor Eos (Ikzf4) as a positive regulator of CD4-CTL differentiation during murine immune responses against influenza virus infection. We find that the frequency of Eos+ cells is elevated in lung CD4-CTL populations and that the cytotoxic gene program is compromised in Eos-deficient CD4+ T cells. Consequently, we observe a reduced frequency and number of lung-residing, influenza virus-responsive CD4-CTLs in the absence of Eos. Mechanistically, we determine that this is due, at least in part, to reduced expression of IL-2 and IL-15 cytokine receptor subunits on the surface of Eos-deficient CD4+ T cells, both of which support the CD4-CTL program. Finally, we find that Aiolos, a related Ikaros family member and known CD4-CTL antagonist, represses Eos expression by antagonizing STAT5-dependent activation of the Ikzf4 promoter. Collectively, our findings reveal a mechanism wherein Eos and Aiolos act in opposition to regulate cytotoxic programming of CD4+ T cells.


Assuntos
Antineoplásicos , Linfócitos T CD4-Positivos , Camundongos , Humanos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linfócitos T Citotóxicos , Diferenciação Celular , Citocinas/metabolismo , Antineoplásicos/metabolismo
5.
J Immunol ; 211(3): 365-376, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314436

RESUMO

The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.


Assuntos
Asma , Fator de Transcrição STAT5 , Camundongos , Animais , Fator de Transcrição STAT5/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Células Th2
6.
Proc Natl Acad Sci U S A ; 119(31): e2200592119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35858386

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant contains extensive sequence changes relative to the earlier-arising B.1, B.1.1, and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (VLPs), we examined mutations in all four structural proteins and found that Omicron and Delta showed 4.6-fold higher luciferase delivery overall relative to the ancestral B.1 lineage, a property conferred mostly by enhancements in the S and N proteins, while mutations in M and E were mostly detrimental to assembly. Thirty-eight antisera samples from individuals vaccinated with Pfizer/BioNTech, Moderna, or Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had 15-fold lower efficacy to prevent cell transduction by VLPs containing the Omicron mutations relative to the ancestral B.1 spike protein. A third dose of Pfizer vaccine elicited substantially higher neutralization titers against Omicron, resulting in detectable neutralizing antibodies in eight out of eight subjects compared to one out of eight preboosting. Furthermore, the monoclonal antibody therapeutics casirivimab and imdevimab had robust neutralization activity against B.1 and Delta VLPs but no detectable neutralization of Omicron VLPs, while newly authorized bebtelovimab maintained robust neutralization across variants. Our results suggest that Omicron has similar assembly efficiency and cell entry compared to Delta and that its rapid spread is due mostly to reduced neutralization in sera from previously vaccinated subjects. In addition, most currently available monoclonal antibodies will not be useful in treating Omicron-infected patients with the exception of bebtelovimab.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética
7.
J Immunol ; 199(7): 2377-2387, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28848064

RESUMO

B cell lymphoma-6 (Bcl-6) is a transcriptional repressor that is required for the differentiation of T follicular helper (TFH) cell populations. Currently, the molecular mechanisms underlying the transcriptional regulation of Bcl-6 expression are unclear. In this study, we have identified the Ikaros zinc finger transcription factors Aiolos and Ikaros as novel regulators of Bcl-6. We found that increased expression of Bcl-6 in CD4+ Th cell populations correlated with enhanced enrichment of Aiolos and Ikaros at the Bcl6 promoter. Furthermore, overexpression of Aiolos or Ikaros, but not the related family member Eos, was sufficient to induce Bcl6 promoter activity. Intriguingly, STAT3, a known Bcl-6 transcriptional regulator, physically interacted with Aiolos to form a transcription factor complex capable of inducing the expression of Bcl6 and the TFH-associated cytokine receptor Il6ra Importantly, in vivo studies revealed that the expression of Aiolos was elevated in Ag-specific TFH cells compared with that observed in non-TFH effector Th cells generated in response to influenza infection. Collectively, these data describe a novel regulatory mechanism through which STAT3 and the Ikaros zinc finger transcription factors Aiolos and Ikaros cooperate to regulate Bcl-6 expression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fator de Transcrição Ikaros/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Fator de Transcrição STAT3/metabolismo , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Fator de Transcrição Ikaros/genética , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/genética , Linfócitos T Auxiliares-Indutores/metabolismo , Transativadores/genética , Transativadores/metabolismo
8.
FASEB J ; 30(8): 2837-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27127101

RESUMO

Null mutations in for pigment epithelium-derived factor (PEDF), the protein product of the SERPINF1 gene, are the cause of osteogenesis imperfecta (OI) type VI. The PEDF-knockout (KO) mouse captures crucial elements of the human disease, including diminished bone mineralization and propensity to fracture. Our group and others have demonstrated that PEDF directs human mesenchymal stem cell (hMSC) commitment to the osteoblast lineage and modulates Wnt/ß-catenin signaling, a major regulator of bone development; however, the ability of PEDF to restore bone mass in a mouse model of OI type VI has not been determined. In this study, PEDF delivery increased trabecular bone volume/total volume by 52% in 6-mo-old PEDF-KO mice but not in wild-type mice. In young (19-d-old) PEDF-KO mice, PEDF restoration increased bone volume fraction by 35% and enhanced biomechanical parameters of bone plasticity. A Wnt-green fluorescent protein reporter demonstrated dynamic changes in Wnt/ß-catenin signaling characterized by early activation and marked suppression during terminal differentiation of hMSCs. Continuous Wnt3a exposure impeded mineralization of hMSCs, whereas the combination of Wnt3a and PEDF potentiated mineralization. Interrogation of the PEDF sequence identified a conserved motif found in other Wnt modulators, such as the dickkopf proteins. Mutation of a single amino acid on a 34-mer PEDF peptide increased mineralization of hMSC cultures compared with the native peptide sequence. These results indicate that PEDF counters Wnt signaling to allow for osteoblast differentiation and provides a mechanistic insight into how the PEDF null state results in OI type VI.-Belinsky, G. S., Sreekumar, B., Andrejecsk, J. W., Saltzman, W. M., Gong, J., Herzog, R. I., Lin, S., Horsley, V., Carpenter, T. O., Chung, C. Pigment epithelium-derived factor restoration increases bone mass and improves bone plasticity in a model of osteogenesis imperfecta type VI via Wnt3a blockade.


Assuntos
Densidade Óssea/fisiologia , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Osteogênese Imperfeita/tratamento farmacológico , Serpinas/metabolismo , Proteína Wnt3A/metabolismo , Animais , Fenômenos Biomecânicos , Densidade Óssea/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Osteogênese Imperfeita/genética , Serpinas/genética , Transdução de Sinais , Proteína Wnt3A/genética , beta Catenina/metabolismo
9.
bioRxiv ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37333294

RESUMO

Progress in understanding long COVID and developing effective therapeutics is hampered in part by the lack of suitable animal models. Here we used ACE2-transgenic mice recovered from Omicron (BA.1) infection to test for pulmonary and behavioral post-acute sequelae. Through in-depth phenotyping by CyTOF, we demonstrate that naïve mice experiencing a first Omicron infection exhibit profound immune perturbations in the lung after resolving acute infection. This is not observed if mice were first vaccinated with spike-encoding mRNA. The protective effects of vaccination against post-acute sequelae were associated with a highly polyfunctional SARS-CoV-2-specific T cell response that was recalled upon BA.1 breakthrough infection but not seen with BA.1 infection alone. Without vaccination, the chemokine receptor CXCR4 was uniquely upregulated on multiple pulmonary immune subsets in the BA.1 convalescent mice, a process previously connected to severe COVID-19. Taking advantage of recent developments in machine learning and computer vision, we demonstrate that BA.1 convalescent mice exhibited spontaneous behavioral changes, emotional alterations, and cognitive-related deficits in context habituation. Collectively, our data identify immunological and behavioral post-acute sequelae after Omicron infection and uncover a protective effect of vaccination against post-acute pulmonary immune perturbations.

10.
mBio ; 14(4): e0088923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37294090

RESUMO

Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting. To address this knowledge gap, we longitudinally sampled 14 SARS-CoV-2-positive subjects who remained outpatient and 4 household controls. SARS-CoV-2 cases exhibited a significantly less stable gut microbiota relative to controls. These results were confirmed and extended in the K18-humanized angiotensin-converting enzyme 2 mouse model, which is susceptible to SARS-CoV-2 infection. All of the tested SARS-CoV-2 variants significantly disrupted the mouse gut microbiota, including USA-WA1/2020 (the original variant detected in the USA), Delta, and Omicron. Surprisingly, despite the fact that the Omicron variant caused the least severe symptoms in mice, it destabilized the gut microbiota and led to a significant depletion in Akkermansia muciniphila. Furthermore, exposure of wild-type C57BL/6J mice to SARS-CoV-2 disrupted the gut microbiota in the absence of severe lung pathology. IMPORTANCE Taken together, our results demonstrate that even mild cases of SARS-CoV-2 can disrupt gut microbial ecology. Our findings in non-hospitalized individuals are consistent with studies of hospitalized patients, in that reproducible shifts in gut microbial taxonomic abundance in response to SARS-CoV-2 have been difficult to identify. Instead, we report a long-lasting instability in the gut microbiota. Surprisingly, our mouse experiments revealed an impact of the Omicron variant, despite producing the least severe symptoms in genetically susceptible mice, suggesting that despite the continued evolution of SARS-CoV-2, it has retained its ability to perturb the intestinal mucosa. These results will hopefully renew efforts to study the mechanisms through which Omicron and future SARS-CoV-2 variants alter gastrointestinal physiology, while also considering the potentially broad consequences of SARS-CoV-2-induced microbiota instability for host health and disease.


Assuntos
COVID-19 , Microbiota , Animais , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Mamíferos
11.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798416

RESUMO

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb). Here, we designed a plasmid-based viral genome assembly and resc ue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.

12.
Nat Commun ; 14(1): 2308, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085489

RESUMO

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb). Here, we present a plasmid-based viral genome assembly and rescue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Animais , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral/genética , RNA Viral/genética , SARS-CoV-2/genética , RNA Subgenômico/genética
13.
Emerg Microbes Infect ; 12(2): 2270071, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869789

RESUMO

The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous recombinants such as "Deltacron." We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2) immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinação , Deriva e Deslocamento Antigênicos , Infecções Irruptivas , Anticorpos Neutralizantes , Anticorpos Antivirais
14.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36827975

RESUMO

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2 , Organoides , Tetraspaninas/genética
15.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912856

RESUMO

Hepatitis C virus (HCV) infection remains a worldwide public health issue despite direct-acting antivirals. A substantial proportion of infected individuals (15%-45%) spontaneously clear repeated HCV infections with genetically different viruses by generating broadly neutralizing antibodies (bNAbs). However, translating this response into an effective vaccine strategy has been unsuccessful. In this issue of the JCI, Frumento and colleagues report on their study of bNAb evolution longitudinally in convalescent individuals with repeated infections. Using pseudotyped viruses, well-characterized monoclonal antibodies, and complex modeling, the authors show that multiple exposures to antigenically related, antibody-sensitive viral envelope proteins induced potent bNAbs. This work provides valuable insight into the best strategies for developing HCV vaccines in the future that may successfully reproduce the immunity induced during natural exposures.


Assuntos
Hepatite C Crônica , Hepatite C , Vacinas , Vacinas contra Hepatite Viral , Anticorpos Neutralizantes , Antivirais , Anticorpos Amplamente Neutralizantes , Convalescença , Sinais (Psicologia) , Hepacivirus , Anticorpos Anti-Hepatite C , Humanos , Vacinas/metabolismo , Proteínas do Envelope Viral
16.
medRxiv ; 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981067

RESUMO

The Omicron SARS-CoV-2 virus contains extensive sequence changes relative to the earlier arising B.1, B.1.1 and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (SC2-VLPs), we examined mutations in all four structural proteins and found that Omicron showed increased infectivity relative to B.1, B.1.1 and similar to Delta, a property conferred by S and N protein mutations. Thirty-eight antisera samples from individuals vaccinated with tozinameran (Pfizer/BioNTech), elasomeran (Moderna), Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had moderately to dramatically reduced efficacy to prevent cell transduction by VLPs containing the Omicron mutations. The Pfizer/BioNTech and Moderna vaccine antisera showed strong neutralizing activity against VLPs possessing the ancestral spike protein (B.1, B.1.1), with 3-fold reduced efficacy against Delta and 15-fold lower neutralization against Omicron VLPs. Johnson & Johnson antisera showed minimal neutralization of any of the VLPs tested. Furthermore, the monoclonal antibody therapeutics Casirivimab and Imdevimab had robust neutralization activity against B.1, B.1.1 or Delta VLPs but no detectable neutralization of Omicron VLPs. Our results suggest that Omicron is at least as efficient at assembly and cell entry as Delta, and the antibody response triggered by existing vaccines or previous infection, at least prior to boost, will have limited ability to neutralize Omicron. In addition, some currently available monoclonal antibodies will not be useful in treating Omicron-infected patients.

17.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579965

RESUMO

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there are limited data comparing vaccine- and infection-induced neutralizing Abs (nAbs) against COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines (from December 2020 through August 2021) were matched with 30 naturally infected women (from March 2020 through January 2021) by gestational age of exposure. Neutralization activity against the 5 SARS-CoV-2 spike sequences was measured by a SARS-CoV-2-pseudotyped spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared with WT spike protein, these nAbs were less effective against the Delta and Mu spike variants. Vaccination during the third trimester induced higher cord-nAb levels at delivery than did infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared with infection during the first trimester. The transfer ratio (cord nAb level divided by maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicits effective nAbs with differing neutralization kinetics that are influenced by gestational time of exposure.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Idade Gestacional , Humanos , Mães , Testes de Neutralização , Vacinação
18.
medRxiv ; 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075459

RESUMO

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

19.
Science ; 374(6575): 1626-1632, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34735219

RESUMO

Efforts to determine why new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants demonstrate improved fitness have been limited to analyzing mutations in the spike (S) protein with the use of S-pseudotyped particles. In this study, we show that SARS-CoV-2 virus-like particles (SC2-VLPs) can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and at multiple steps in the viral life cycle. In SC2-VLPs, four nucleocapsid (N) mutations found universally in more-transmissible variants independently increased messenger RNA delivery and expression ~10-fold, and in a reverse genetics model, the serine-202→arginine (S202R) and arginine-203→methionine (R203M) mutations each produced >50 times as much virus. SC2-VLPs provide a platform for rapid testing of viral variants outside of a biosafety level 3 setting and demonstrate N mutations and particle assembly to be mechanisms that could explain the increased spread of variants, including B.1.617.2 (Delta, which contains the R203M mutation).


Assuntos
Partículas Artificiais Semelhantes a Vírus , Proteínas do Nucleocapsídeo de Coronavírus/genética , Mutação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Animais , Linhagem Celular , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plasmídeos , RNA Mensageiro/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Empacotamento do Genoma Viral , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus
20.
medRxiv ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33758899

RESUMO

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA