Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 159(5): 1070-1085, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416946

RESUMO

Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Animais , Embrião não Mamífero/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Receptores Notch/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/metabolismo
2.
Kidney Int ; 95(6): 1494-1504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005274

RESUMO

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON. Here, we show that many of these patients, including two previously unreported, exhibit a wide array of kidney abnormalities. Detailed phenotyping of 14 patients with SON haploinsufficiency identified kidney anomalies in 8 patients, including horseshoe kidney, unilateral renal hypoplasia, and renal cysts. Recurrent urinary tract infections, electrolyte disturbances, and hypertension were also observed in some patients. SON knockdown in kidney cell lines leads to abnormal pre-mRNA splicing, resulting in decreased expression of several established CAKUT genes. Furthermore, these molecular events were observed in patient-derived cells with SON haploinsufficiency. Taken together, our data suggest that the wide spectrum of phenotypes in patients with a pathogenic SON mutation is a consequence of impaired pre-mRNA splicing of several CAKUT genes. We propose that genetic testing panels designed to diagnose children with a kidney phenotype should include the SON gene.


Assuntos
Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Haploinsuficiência , Antígenos de Histocompatibilidade Menor/genética , Splicing de RNA/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Canais de Cátion TRPP/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico
3.
EMBO J ; 33(20): 2363-73, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25230933

RESUMO

Hematopoietic stem cells (HSCs) require multiple molecular inputs for proper specification, including activity of the Notch signaling pathway. A requirement for the Notch1 and dispensability of the Notch2 receptor has been demonstrated in mice, but the role of the remaining Notch receptors has not been investigated. Here, we demonstrate that three of the four Notch receptors are independently required for the specification of HSCs in the zebrafish. The orthologues of the murine Notch1 receptor, Notch1a and Notch1b, are each required intrinsically to fate HSCs, just prior to their emergence from aortic hemogenic endothelium. By contrast, the Notch3 receptor is required earlier within the developing somite to regulate HSC emergence in a non-cell-autonomous manner. Epistatic analyses demonstrate that Notch3 function lies downstream of Wnt16, which is required for HSC specification through its regulation of two Notch ligands, dlc and dld. Collectively, these findings demonstrate for the first time that multiple Notch signaling inputs are required to specify HSCs and that Notch3 performs a novel role within the somite to regulate the neighboring precursors of hemogenic endothelium.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Diferenciação Celular , Hemangioblastos/citologia , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/genética , Receptor Notch3 , Receptores Notch/genética , Transdução de Sinais , Somitos/citologia , Somitos/embriologia , Somitos/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Development ; 142(6): 1050-61, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25758220

RESUMO

The adult blood system is established by hematopoietic stem cells (HSCs), which arise during development from an endothelial-to-hematopoietic transition of cells comprising the floor of the dorsal aorta. Expression of aortic runx1 has served as an early marker of HSC commitment in the zebrafish embryo, but recent studies have suggested that HSC specification begins during the convergence of posterior lateral plate mesoderm (PLM), well before aorta formation and runx1 transcription. Further understanding of the earliest stages of HSC specification necessitates an earlier marker of hemogenic endothelium. Studies in mice have suggested that GATA2 might function at early stages within hemogenic endothelium. Two orthologs of Gata2 exist in zebrafish: gata2a and gata2b. Here, we report that gata2b expression initiates during the convergence of PLM, becoming restricted to emerging HSCs. We observe Notch-dependent gata2b expression within the hemogenic subcompartment of the dorsal aorta that is in turn required to initiate runx1 expression. Our results indicate that Gata2b functions within hemogenic endothelium from an early stage, whereas Gata2a functions more broadly throughout the vascular system.


Assuntos
Padronização Corporal/fisiologia , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hemangioblastos/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Aorta/citologia , Aorta/embriologia , Proteínas de Bactérias , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Primers do DNA/genética , Citometria de Fluxo , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hibridização In Situ , Proteínas Luminescentes , Mesoderma/embriologia , Oligonucleotídeos Antissenso/genética , Reação em Cadeia da Polimerase em Tempo Real , Imagem com Lapso de Tempo , Proteínas de Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
5.
Blood ; 124(2): 220-8, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24869937

RESUMO

In nonmammalian vertebrates, the functional units of hemostasis are thrombocytes. Thrombocytes are thought to arise from bipotent thrombocytic/erythroid progenitors (TEPs). TEPs have been experimentally demonstrated in avian models of hematopoiesis, and mammals possess functional equivalents known as megakaryocyte/erythroid progenitors (MEPs). However, the presence of TEPs in teleosts has only been speculated. To identify and prospectively isolate TEPs, we identified, cloned, and generated recombinant zebrafish thrombopoietin (Tpo). Tpo mRNA expanded itga2b:GFP(+) (cd41:GFP(+)) thrombocytes as well as hematopoietic stem and progenitor cells (HSPCs) in the zebrafish embryo. Utilizing Tpo in clonal methylcellulose assays, we describe for the first time the prospective isolation and characterization of TEPs from transgenic zebrafish. Combinatorial use of zebrafish Tpo, erythropoietin, and granulocyte colony stimulating factor (Gcsf) allowed the investigation of HSPCs responsible for erythro-, myelo-, and thrombo-poietic differentiation. Utilizing these assays allowed the visualization and differentiation of hematopoietic progenitors ex vivo in real-time with time-lapse and high-throughput microscopy, allowing analyses of their clonogenic and proliferative capacity. These studies indicate that the functional role of Tpo in the differentiation of thrombocytes from HSPCs is well conserved among vertebrate organisms, positing the zebrafish as an excellent model to investigate diseases caused by dysregulated erythro- and thrombo-poietic differentiation.


Assuntos
Hematopoese/genética , Trombopoetina/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Plaquetas/fisiologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Embrião não Mamífero , Células-Tronco Hematopoéticas/fisiologia , Peixe-Zebra/embriologia
6.
Blood ; 122(24): 3918-28, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24128862

RESUMO

Granulocyte colony-stimulating factor (Gcsf) drives the proliferation and differentiation of granulocytes, monocytes, and macrophages (mφs) from hematopoietic stem and progenitor cells (HSPCs). Analysis of the zebrafish genome indicates the presence of 2 Gcsf ligands, likely resulting from a duplication event in teleost evolution. Although Gcsfa and Gcsfb share low sequence conservation, they share significant similarity in their predicted ligand/receptor interaction sites and structure. Each ligand displays differential temporal expression patterns during embryogenesis and spatial expression patterns in adult animals. To determine the functions of each ligand, we performed loss- and gain-of-function experiments. Both ligands signal through the Gcsf receptor to expand primitive neutrophils and mφs, as well as definitive granulocytes. To further address their functions, we generated recombinant versions and tested them in clonal progenitor assays. These sensitive in vitro techniques indicated similar functional attributes in supporting HSPC growth and differentiation. Finally, in addition to supporting myeloid differentiation, zebrafish Gcsf is required for the specification and proliferation of hematopoietic stem cells, suggesting that Gcsf represents an ancestral cytokine responsible for the broad support of HSPCs. These findings may inform how hematopoietic cytokines evolved following the diversification of teleosts and mammals from a common ancestor.


Assuntos
Fator Estimulador de Colônias de Granulócitos/genética , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Fator Estimulador de Colônias de Granulócitos/metabolismo , Sistema Hematopoético/embriologia , Sistema Hematopoético/metabolismo , Hibridização In Situ , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia Confocal , Mielopoese/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
8.
Blood ; 118(5): 1274-82, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21415264

RESUMO

Identification of hematopoietic progenitor cells in the zebrafish (Danio rerio) has been hindered by a lack of functional assays to gauge proliferative potential and differentiation capacity. To investigate the nature of myeloerythroid progenitor cells, we developed clonal methylcellulose assays by using recombinant zebrafish erythropoietin and granulocyte colony-stimulating factor. From adult whole kidney marrow, erythropoietin was required to support erythroid colony formation, and granulocyte colony-stimulating factor was required to support the formation of colonies containing neutrophils, monocytes, and macrophages. Myeloid and erythroid colonies showed distinct morphologies and were easily visualized and scored by their expression of lineage-specific fluorescent transgenes. Analysis of the gene-expression profiles after isolation of colonies marked by gata1:DsRed or mpx:eGFP transgenes confirmed our morphological erythroid and myeloid lineage designations, respectively. The majority of progenitor activity was contained within the precursor light scatter fraction, and more immature precursors were present within the lymphoid fraction. Finally, we performed kinetic analyses of progenitor activity after sublethal irradiation and demonstrated that recovery to preirradiation levels occurred by 14 days after irradiation. Together, these experiments provide the first report of clonal hematopoietic progenitor assays in the zebrafish and establish the number, characteristics, and kinetics of myeloerythroid progenitors during both steady-state and stress hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais , Embrião não Mamífero , Células Eritroides/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/fisiologia , Proteínas Recombinantes/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
9.
Proc Natl Acad Sci U S A ; 107(36): 15850-5, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20733076

RESUMO

In mammals, dendritic cells (DCs) form the key link between the innate and adaptive immune systems. DCs act as immune sentries in various tissues and, upon encountering pathogen, engulf and traffic foreign antigen to secondary lymphoid tissues, stimulating antigen-specific T lymphocytes. Although DCs are of fundamental importance in orchestrating the mammalian immune response, their presence and function in nonmammalian vertebrates is largely unknown. Because teleosts possess one of the earliest recognizable adaptive immune systems, we sought to identify antigen-presenting cells (APCs) in the zebrafish to better understand the potential origins of DCs and their evolutionary relationship to lymphocytes. Here we present the identification and characterization of a zebrafish APC subset strongly resembling mammalian DCs. Rare DCs are present in various adult tissues, and can be enriched by their affinity for the lectin peanut agglutinin (PNA). We show that PNA(hi) myeloid cells possess the classical morphological features of mammalian DCs as revealed by histochemical and ultrastructural analyses, phagocytose-labeled bacterial preparations in vivo, and exhibit expression of genes associated with DC function and antigen presentation, including il12, MHC class II invariant chain iclp1, and csf1r. Importantly, we show that PNA(hi) cells can activate T lymphocytes in an antigen-dependent manner. Together, these studies suggest that the cellular constituents responsible for antigen presentation are remarkably conserved from teleosts to mammals, and indicate that the zebrafish may serve as a unique model to study the origin of APC subsets and their evolutionary role as the link between the innate and adaptive immune systems.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Animais , Sequência de Bases , Primers do DNA , Reação em Cadeia da Polimerase , Peixe-Zebra
10.
Blood ; 115(14): 2777-83, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20107232

RESUMO

Recent studies have revealed that definitive hematopoiesis in vertebrates initiates through the formation of a non-self-renewing progenitor with limited multilineage differentiation potential termed the erythromyeloid progenitor (EMP). EMPs are specified before hematopoietic stem cells (HSCs), which self-renew and are capable of forming all mature adult blood lineages including lymphoid cells. Despite their differences, EMPs and HSCs share many phenotypic traits, making precise study of their respective functions difficult. Here, we examine whether embryonic specification of EMPs requires Notch signaling as has been shown for HSCs. In mindbomb mutants, which lack functional Notch ligands, we show that EMPs are specified normally: we detect no significant differences in cell number, gene expression, or differentiation capacity between EMPs purified from wild-type (WT) or mindbomb mutant embryos. Similarly N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a chemical inhibitor of Notch receptor activation, has no effect on EMP specification. These studies establish that HSCs are the only hematopoietic precursor that requires Notch signaling and help to clarify the signaling events underlying the specification of the 2 distinct waves of definitive hematopoiesis.


Assuntos
Embrião não Mamífero/embriologia , Hematopoese/fisiologia , Células Progenitoras Mieloides/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Dipeptídeos/farmacologia , Hematopoese/efeitos dos fármacos , Linfócitos/metabolismo , Mutação , Receptores Notch/genética , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Blood ; 116(19): 3944-54, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20713961

RESUMO

Eosinophils are granulocytic leukocytes implicated in numerous aspects of immunity and disease. The precise functions of eosinophils, however, remain enigmatic. Alternative models to study eosinophil biology may thus yield novel insights into their function. Eosinophilic cells have been observed in zebrafish but have not been thoroughly characterized. We used a gata2:eGFP transgenic animal to enable prospective isolation and characterization of zebrafish eosinophils, and demonstrate that all gata2(hi) cells in adult hematopoietic tissues are eosinophils. Although eosinophils are rare in most organs, they are readily isolated from whole kidney marrow and abundant within the peritoneal cavity. Molecular analyses demonstrate that zebrafish eosinophils express genes important for the activities of mammalian eosinophils. In addition, gata2(hi) cells degranulate in response to helminth extract. Chronic exposure to helminth- related allergens resulted in profound eosinophilia, demonstrating that eosinophil responses to allergens have been conserved over evolution. Importantly, infection of adult zebrafish with Pseudocapillaria tomentosa, a natural nematode pathogen of teleosts, caused marked increases in eosinophil number within the intestine. Together, these observations support a conserved role for eosinophils in the response to helminth antigens or infection and provide a new model to better understand how parasitic worms activate, co-opt, or evade the vertebrate immune response.


Assuntos
Eosinófilos/fisiologia , Peixe-Zebra/sangue , Animais , Animais Geneticamente Modificados , Antígenos de Helmintos , Sequência de Bases , Degranulação Celular/imunologia , Primers do DNA/genética , Infecções por Enoplida/sangue , Infecções por Enoplida/imunologia , Infecções por Enoplida/parasitologia , Eosinofilia/etiologia , Eosinofilia/imunologia , Eosinofilia/parasitologia , Eosinófilos/citologia , Eosinófilos/imunologia , Eosinófilos/parasitologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Interações Hospedeiro-Parasita , Neutrófilos/fisiologia , Trichuroidea/imunologia , Trichuroidea/patogenicidade , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Peixe-Zebra/parasitologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
PLoS One ; 17(3): e0265618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333877

RESUMO

In November 2018, the Camp Fire devastated the mountain community of Paradise, CA. The burning of plastic pipes, wiring, construction materials, paint, and car batteries released toxic chemicals into the environment, contaminating the air, soil, and local waterways. Examples of toxins that were identified in the creeks and waterways in and around Paradise included pentachlorophenol (PCP), chrysene, and polyaromatic hydrocarbons. The effects of some of these chemicals on embryonic development, hematopoiesis (blood formation), and the immune system have not been thoroughly studied. Defining safe levels and the long-term effects of exposure is imperative to understanding and mitigating potential negative future outcomes. To perform these studies, we utilized zebrafish (Danio rerio), a commonly used vertebrate model system to study development. We observed the adverse effects of PCP on the development of zebrafish by using fluorescence microscopy, and saw that increased concentrations of PCP decreased the numbers of normal red blood cells and myeloid cells. Additionally, we observed that animal survival decreased in response to increasing concentrations of PCP. Furthermore, the prevalence of characteristic physical deformities such as tail curvature were greater in the treatment groups. Lastly, runx1, cmyb, and cd41 expression was reduced in fish treated with PCP. These results suggest that PCP has a previously underappreciated effect on blood and immune cell development and future studies should be performed to determine the molecular mechanisms involved.


Assuntos
Pentaclorofenol , Animais , Desenvolvimento Embrionário , Hematopoese , Organogênese , Pentaclorofenol/toxicidade , Peixe-Zebra
14.
Blood ; 114(2): 279-89, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19433857

RESUMO

Studies of zebrafish hematopoiesis have been largely performed using mutagenesis approaches and retrospective analyses based upon gene expression patterns in whole embryos. We previously developed transplantation assays to test the repopulation potentials of candidate hematopoietic progenitor cells. We have been impaired, however, in determining cellular differentiation potentials by a lack of short-term functional assays. To enable more precise analyses of hematopoietic progenitor cells, we have created zebrafish kidney stromal (ZKS) cell lines. Culture of adult whole kidney marrow with ZKS cells results in the maintenance and expansion of hematopoietic precursor cells. Hematopoietic growth is dependent upon ZKS cells, and we show that ZKS cells express many growth factors and ligands previously demonstrated to be important in maintaining mammalian hematopoietic cells. In the absence of exogenous growth factors, ZKS cells maintain early hematopoietic precursors and support differentiation of lymphoid and myeloid cells. With the addition of zebrafish erythropoietin, ZKS cells also support the differentiation of erythroid precursors. These conditions have enabled the ability to ascertain more precisely the points at which hematopoietic mutants are defective. The development of robust in vitro assays now provide the means to track defined, functional outcomes for prospectively isolated blood cell subsets in the zebrafish.


Assuntos
Linhagem da Célula , Hematopoese , Rim/citologia , Células Estromais/citologia , Peixe-Zebra/embriologia , Envelhecimento/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Eritropoetina/farmacologia , Regulação da Expressão Gênica , Rim/metabolismo , Mutação/genética , Células Estromais/metabolismo , Peixe-Zebra/metabolismo
15.
Bioinform Biol Insights ; 15: 11779322211037770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413636

RESUMO

Neutrophils are a type of white blood cell essential for the function of the innate immune system. To elucidate mechanisms of neutrophil biology, many studies are performed in vertebrate animal model systems. In Danio rerio (zebrafish), in vivo imaging of neutrophils is possible due to transgenic strains that possess fluorescently labeled leukocytes. However, due to the relative abundance of neutrophils, the counting process is laborious and subjective. In this article, we propose the use of a custom trained "you only look once" (YOLO) machine learning algorithm to automate the identification and counting of fluorescently labeled neutrophils in zebrafish. Using this model, we found the correlation coefficient between human counting and the model equals r = 0.8207 with an 8.65% percent error, while variation among human counters was 5% to 12%. Importantly, the model was able to correctly validate results of a previously published article that quantitated neutrophils manually. While the accuracy can be further improved, this model notably achieves these results in mere minutes compared with hours via standard manual counting protocols and can be performed by anyone with basic programming knowledge. It further supports the use of deep learning models for high throughput analysis of fluorescently labeled blood cells in the zebrafish model system.

16.
J Vis Exp ; (170)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33999034

RESUMO

The diversity of cell lineages that comprise mature blood in vertebrate animals arise from the differentiation of hematopoietic stem and progenitor cells (HSPCs). This is a critical process that occurs throughout the lifespan of organisms, and disruption of the molecular pathways involved during embryogenesis can have catastrophic long-term consequences. For a multitude of reasons, zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop externally, and by 7 days postfertilization (dpf) have produced most of the subtypes of definitive blood cells that will persist for their lifetime. Assays to assess the number of hematopoietic cells have been developed, mainly utilizing specific histological stains, in situ hybridization techniques, and microscopy of transgenic animals that utilize blood cell-specific promoters driving the expression of fluorescent proteins. However, most staining assays and in situ hybridization techniques do not accurately quantitate the number of blood cells present; only large differences in cell numbers are easily visualized. Utilizing transgenic animals and analyzing individuals with fluorescent or confocal microscopy can be performed, but the quantitation of these assays relies on either counting manually or utilizing expensive imaging software, both of which can make errors. Development of additional methods to assess blood cell numbers would be economical, faster, and could even be automated to quickly assess the effect of CRISPR-mediated genetic modification, morpholino-mediated transcript reduction, and the effect of drug compounds that affect hematopoiesis on a large scale. This novel assay to quantitate blood cells is performed by dissociating whole zebrafish embryos and analyzing the amount of fluorescently labelled blood cells present. These assays should allow elucidation of molecular pathways responsible for blood cell generation, expansion, and regulation during embryogenesis, which will allow researchers to further discover novel factors altered during blood diseases, as well as pathways essential during the evolution of vertebrate hematopoiesis.


Assuntos
Hematopoese , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Hibridização In Situ , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
PLoS One ; 16(2): e0247489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630943

RESUMO

The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.


Assuntos
Embrião não Mamífero/citologia , Hematopoese , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , Doenças Hematológicas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
19.
PLoS One ; 15(8): e0236839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780746

RESUMO

The majority of chronic myeloid leukemia (CML) cases are caused by a chromosomal translocation linking the breakpoint cluster region (BCR) gene to the Abelson murine leukemia viral oncogene-1 (ABL1), creating the mutant fusion protein BCR-ABL1. Downstream of BCR-ABL1 is growth factor receptor-bound protein-2 (GRB2), an intracellular adapter protein that binds to BCR-ABL1 via its src-homology-2 (SH2) domain. This binding constitutively activates growth pathways, downregulates apoptosis, and leads to an over proliferation of immature and dysfunctional myeloid cells. Utilizing novel synthetic methods, we developed four furo-quinoxaline compounds as GRB2 SH2 domain antagonists with the goal of disrupting this leukemogenic signaling. One of the four antagonists, NHD2-15, showed a significant reduction in proliferation of K562 cells, a human BCR-ABL1+ leukemic cell line. To elucidate the mode of action of these compounds, various biophysical, in vitro, and in vivo assays were performed. Surface plasmon resonance (SPR) assays indicated that NHD2-15 antagonized GRB2, binding with a KD value of 119 ± 2 µM. Cellulose nitrate (CN) assays indicated that the compound selectively bound the SH2 domain of GRB2. Western blot assays suggested the antagonist downregulated proteins involved in leukemic transformation. Finally, NHD2-15 was nontoxic to primary cells and adult zebrafish, indicating that it may be an effective clinical treatment for CML.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteína Adaptadora GRB2/antagonistas & inibidores , Quinoxalinas/farmacologia , Animais , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Humanos , Células K562 , Rim/citologia , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Ligação Proteica , Quinoxalinas/química , Quinoxalinas/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Ressonância de Plasmônio de Superfície , Peixe-Zebra , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA