RESUMO
Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.
Assuntos
Metagenoma , Microbiota , Humanos , Metadados , Software , Bases de Dados Genéticas , Plasmídeos/genéticaRESUMO
Bacterial plasmids substantially contribute to the rapid spread of antibiotic resistance, which is a crisis in healthcare today. Coevolution of plasmids and their hosts promotes this spread of resistance by ameliorating the cost of plasmid carriage. However, our knowledge of plasmid-bacteria coevolution is solely based on studies done in well-mixed liquid cultures, even though biofilms represent the main way of bacterial life on Earth and are responsible for most infections. The spatial structure and the heterogeneity provided by biofilms are known to lead to increased genetic diversity as compared with well-mixed liquids. Therefore, we expect that growth in this complex environment could affect the evolutionary trajectories of plasmid-host dyads. We experimentally evolved Shewanella oneidensis MR-1 with plasmid pBP136Gm in biofilms and chemostats and sequenced the genomes of clones and populations. Biofilm populations not only maintained a higher diversity of mutations than chemostat populations but contained a few clones with markedly more persistent plasmids that evolved via multiple distinct trajectories. These included the acquisition of a putative toxin-antitoxin transposon by the plasmid and chromosomal mutations. Some of these genetic changes resulted in loss of plasmid transferability or decrease in plasmid cost. Growth in chemostats led to a higher proportion of variants with decreased plasmid persistence, a phenomenon not detected in biofilms. We suggest that the presence of more stable plasmid-host dyads in biofilms reflects higher genetic diversity and possibly unknown selection pressures. Overall, this study underscores the importance of the mode of growth in the evolution of antibiotic-resistant bacteria.
Assuntos
Biofilmes , Evolução Biológica , Plasmídeos , Shewanella/genética , Sequenciamento Completo do GenomaRESUMO
By characterizing the trajectories of antibiotic resistance gene transfer in bacterial communities such as the gut microbiome, we will better understand the factors that influence this spread of resistance. Our aim was to investigate the host network of a multidrug resistance broad-host-range plasmid in the culturable gut microbiome of zebrafish. This was done through in vitro and in vivo conjugation experiments with Escherichia coli as the donor of the plasmid pB10::gfp When this donor was mixed with the extracted gut microbiome, only transconjugants of Aeromonas veronii were detected. In separate matings between the same donor and four prominent isolates from the gut microbiome, the plasmid transferred to two of these four isolates, A. veronii and Plesiomonas shigelloides, but not to Shewanella putrefaciens and Vibrio mimicus When these A. veronii and P. shigelloides transconjugants were the donors in matings with the same four isolates, the plasmid now also transferred from A. veronii to S. putrefaciensP. shigelloides was unable to donate the plasmid, and V. mimicus was unable to acquire it. Finally, when the E. coli donor was added in vivo to zebrafish through their food, plasmid transfer was observed in the gut, but only to Achromobacter, a rare member of the gut microbiome. This work shows that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome depends on the donor-recipient species combinations and therefore their spatial arrangement. It also suggests that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.IMPORTANCE To understand how antibiotic resistance plasmids end up in human pathogens, it is crucial to learn how, where, and when they are transferred and maintained in members of bacterial communities such as the gut microbiome. To gain insight into the network of plasmid-mediated antibiotic resistance sharing in the gut microbiome, we investigated the transferability and maintenance of a multidrug resistance plasmid among the culturable bacteria of the zebrafish gut. We show that the success of plasmid-mediated antibiotic resistance spread in a gut microbiome can depend on which species are involved, as some are important nodes in the plasmid-host network and others are dead ends. Our findings also suggest that rare gut microbiome members should not be ignored as potential reservoirs of multidrug resistance plasmids from food.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal/genética , Peixe-Zebra/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Masculino , PlasmídeosRESUMO
Although animal manure is applied to agricultural fields for its nutrient value, it may also contain potential contaminants. To determine the variability in such contaminants as well as in valuable nutrients, nine uncomposted manure samples from Idaho dairies collected during 2.5 years were analyzed for macro- and micro-nutrients, hormones, phytoestrogens, antibiotics, veterinary drugs, antibiotic resistance genes, and genetic elements involved in the spread of antibiotic resistance. Total N ranged from 6.8 to 30.7 (C:N of 10 to 21), P from 2.4 to 9.0, and K from 10.2 to 47.7 g/kg manure. Zn (103 - 348 mg/kg) was more abundant than Cu (56 - 127 mg/kg) in all samples. Phytoestrogens were the most prevalent contaminants detected, with concentrations fluctuating over time, reflecting animal diets. This is the first study to document the presence of flunixin, a non-steroidal anti-inflammatory drug, in solid stacked manure from regular dairy operations. Monensin was the most frequently detected antibiotic. Progesterones and sulfonamides were regularly detected. We also investigated the relative abundance of several types of plasmids involved in the spread of antibiotic resistance in clinical settings. Plasmids belonging to the IncI, IncP, and IncQ1 incompatibility groups were found in almost all manure samples. IncQ1 plasmids, class 1 integrons, and sulfonamide resistance genes were the most widespread and abundant genetic element surveyed, emphasizing their potential role in the spread of antibiotic resistance. The benefits associated with amending agricultural soils with dairy manure must be carefully weighed against the potential negative consequences of any manure contaminants.
Assuntos
Esterco , Solo , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Nutrientes , Microbiologia do SoloRESUMO
Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.
Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Resistência a Múltiplos Medicamentos , Plasmídeos/genéticaRESUMO
Wastewater can play a vital role in infectious disease surveillance, especially in underserved communities where it can reduce the equity gap to larger municipalities. However, using wastewater surveillance in a predictive manner remains a challenge. We tested if detecting SARS-CoV-2 in wastewater can predict outbreaks in rural communities. Under the CDC National Wastewater Surveillance program, we monitored several rural communities in Idaho (USA). While high daily variations in wastewater viral load made real-time interpretation difficult, a SEIR model could factor out the data noise and forecast the start of the Omicron outbreak in five of the six cities that were sampled soon after SARS-CoV-2 quantities increased in wastewater. For one city, the model could predict an outbreak 11 days before reported clinical cases began to increase. An epidemiological modeling approach can transform how epidemiologists use wastewater data to provide public health guidance on infectious diseases in rural communities.
RESUMO
As mobile genetic elements, plasmids are central for our understanding of antimicrobial resistance spread in microbial communities. Plasmids can have varying fitness effects on their host bacteria, which will markedly impact their role as antimicrobial resistance vectors. Using a plasmid population model, we first show that beneficial plasmids interact with a higher number of hosts than costly plasmids when embedded in a community with multiple hosts and plasmids. We then analyse the network of a natural host-plasmid wastewater community from a Hi-C metagenomics dataset. As predicted by the model, we find that antimicrobial resistance encoding plasmids, which are likely to have positive fitness effects on their hosts in wastewater, interact with more bacterial taxa than non-antimicrobial resistance plasmids and are disproportionally important for connecting the entire network compared to non- antimicrobial resistance plasmids. This highlights the role of antimicrobials in restructuring host-plasmid networks by increasing the benefits of antimicrobial resistance carrying plasmids, which can have consequences for the spread of antimicrobial resistance genes through microbial networks. Furthermore, that antimicrobial resistance encoding plasmids are associated with a broader range of hosts implies that they will be more robust to turnover of bacterial strains.
Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Bactérias/genéticaRESUMO
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4â%) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Assuntos
Genoma Bacteriano , Cabras , Mycoplasma ovipneumoniae , Filogenia , Animais , Mycoplasma ovipneumoniae/genética , Cabras/microbiologia , Ovinos/microbiologia , Genômica , Rena/microbiologia , China , Doenças dos Ovinos/microbiologia , Adaptação Fisiológica/genética , Austrália , Pneumonia por Mycoplasma/microbiologia , Pneumonia por Mycoplasma/veterináriaRESUMO
The treatment of hospital effluents (HE) is a major concern, as they are suspected of disseminating drugs and antibiotic resistance determinants in the environment. In order to assess HE influence on wastewater treatment plant biomass, lab-scale conventional activated sludge systems (CAS) were continuously fed with real HE or urban effluent as a control. To gain insights into the main hurdles linked to HE treatment, we conducted a multiparameter study using classical physicochemical characterization, phase contrast and confocal laser scaning microscopy, and molecular biology (i.e., pyrosequencing) tools. HE caused erosion of floc structure and the production of extracellular polymeric substances attributed to the development of floc-forming bacteria. Adaptation of the sludge bacterial community to the HE characteristics, thus maintaining the purification performance of the biomass, was observed. Finally, the comparative metagenomic analysis of the CAS showed that HE treatment resulted in an increase of class 1 resistance integrons (RIs) and the introduction of Pseudomonas spp. into the bacterial community. HE treatment did not reduce the CAS process performance; nevertheless it increases the risk of dissemination into the environment of bacterial species and genetic determinants (RIs) involved in antibiotic resistance acquisition.
Assuntos
Bactérias/classificação , Reatores Biológicos , Integrons , Esgotos , Biodiversidade , Biomassa , Reação em Cadeia da PolimeraseRESUMO
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Assuntos
Resistência a Múltiplos MedicamentosRESUMO
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
RESUMO
Background: Wastewater surveillance for SARS-CoV-2 is an emerging approach to help identify the risk of a COVID-19 outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, nursing homes) scales. Objectives: This research aims to understand the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. Methods: This paper presents the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resource needs, and lessons learned from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Discussion: Our analysis suggests that wastewater monitoring at colleges requires consideration of information needs, local sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
RESUMO
Wastewater surveillance for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging approach to help identify the risk of a coronavirus disease (COVID-19) outbreak. This tool can contribute to public health surveillance at both community (wastewater treatment system) and institutional (e.g., colleges, prisons, and nursing homes) scales. This paper explores the successes, challenges, and lessons learned from initial wastewater surveillance efforts at colleges and university systems to inform future research, development and implementation. We present the experiences of 25 college and university systems in the United States that monitored campus wastewater for SARS-CoV-2 during the fall 2020 academic period. We describe the broad range of approaches, findings, resources, and impacts from these initial efforts. These institutions range in size, social and political geographies, and include both public and private institutions. Our analysis suggests that wastewater monitoring at colleges requires consideration of local information needs, sewage infrastructure, resources for sampling and analysis, college and community dynamics, approaches to interpretation and communication of results, and follow-up actions. Most colleges reported that a learning process of experimentation, evaluation, and adaptation was key to progress. This process requires ongoing collaboration among diverse stakeholders including decision-makers, researchers, faculty, facilities staff, students, and community members.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vigilância em Saúde Pública , Universidades , Águas ResiduáriasRESUMO
Multidrug resistance (MDR) of pathogens is an ongoing public health crisis exacerbated by the horizontal transfer of antibiotic resistance genes via conjugative plasmids. Factors that stabilize these plasmids in bacterial communities contribute to an even higher incidence of MDR, given the increased likelihood that a host will already contain a plasmid when it acquires another through conjugation. Here, we show one such stabilizing factor is host-plasmid coevolution under antibiotic selection, which facilitated the emergence of MDR via two distinct plasmids in communities consisting of Escherichia coli and Klebsiella pneumoniae once antibiotics were removed. In our system, evolution promoted greater stability of a plasmid in its coevolved host. Further, pleiotropic effects resulted in greater plasmid persistence in both novel host-plasmid combinations and, in some cases, multi-plasmid hosts. This evolved stability favoured the generation of MDR cells and thwarted their loss within communities with multiple plasmids. By selecting for plasmid persistence, the application of antibiotics may promote MDR well after their original period of use.
Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Plasmídeos/efeitos dos fármacosRESUMO
The rapid spread of antibiotic resistance among bacterial pathogens is a serious human health threat. While a range of environments have been identified as reservoirs of antibiotic resistance genes (ARGs), we lack understanding of the origins of these ARGs and their spread from environment to clinic. This is partly due to our inability to identify the natural bacterial hosts of ARGs and the mobile genetic elements that mediate this spread, such as plasmids and integrons. Here we demonstrate that the in vivo proximity-ligation method Hi-C can reconstruct a known plasmid-host association from a wastewater community, and identify the in situ host range of ARGs, plasmids, and integrons by physically linking them to their host chromosomes. Hi-C detected both previously known and novel associations between ARGs, mobile genetic elements and host genomes, thus validating this method. We showed that IncQ plasmids and class 1 integrons had the broadest host range in this wastewater, and identified bacteria belonging to Moraxellaceae, Bacteroides, and Prevotella, and especially Aeromonadaceae as the most likely reservoirs of ARGs in this community. A better identification of the natural carriers of ARGs will aid the development of strategies to limit resistance spread to pathogens.
Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana , Plasmídeos/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Integrons , Microbiota/efeitos dos fármacos , Filogenia , Plasmídeos/metabolismo , Águas Residuárias/microbiologiaRESUMO
Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods. Before and after a nonselective enrichment step, tetracycline (TET)-resistant Escherichia coli were isolated and plasmids conferring TET resistance were captured by exogenous plasmid isolation. TET-resistant E. coli isolates, transconjugants, and total community DNA (TC-DNA) from the microbial fraction detached from leaves or after enrichment were analyzed for the presence of resistance genes, class 1 integrons, and various plasmids by real-time PCR and PCR-Southern blot hybridization. Real-time PCR primers were developed for IncI and IncF plasmids. TET-resistant E. coli isolated from arugula and cilantro carried IncF, IncI1, IncN, IncHI1, IncU, and IncX1 plasmids. Three isolates from cilantro were positive for IncN plasmids and blaCTX-M-1 From mixed salad and cilantro, IncF, IncI1, and IncP-1ß plasmids were captured exogenously. Importantly, whereas direct detection of IncI and IncF plasmids in TC-DNA failed, these plasmids became detectable in DNA extracted from enrichment cultures. This confirms that cultivation-independent DNA-based methods are not always sufficiently sensitive to detect the transferable resistome in the rare microbiome. In summary, this study showed that an impressive diversity of self-transmissible multiple resistance plasmids was detected in bacteria associated with produce that is consumed raw, and exogenous capturing into E. coli suggests that they could transfer to gut bacteria as well.IMPORTANCE Produce is one of the most popular food commodities. Unfortunately, leafy greens can be a reservoir of transferable antibiotic resistance genes. We found that IncF and IncI plasmids were the most prevalent plasmid types in E. coli isolates from produce. This study highlights the importance of the rare microbiome associated with produce as a source of antibiotic resistance genes that might escape cultivation-independent detection, yet may be transferred to human pathogens or commensals.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Plasmídeos/genética , Verduras/microbiologia , Coriandrum/microbiologia , Escherichia coli/efeitos dos fármacos , Transferência Genética Horizontal , Alemanha , Integrons/genética , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Alimentos Crus/microbiologia , Tetraciclina/farmacologiaRESUMO
Multidrug resistant bacterial pathogens have become a serious global human health threat, and conjugative plasmids are important drivers of the rapid spread of resistance to last-resort antibiotics. Whereas antibiotics have been shown to select for adaptation of resistance plasmids to their new bacterial hosts, or vice versa, a general evolutionary mechanism has not yet emerged. Here we conducted an experimental evolution study aimed at determining general patterns of plasmid-bacteria evolution. Specifically, we found that a large conjugative resistance plasmid follows the same evolutionary trajectories as its non-conjugative mini-replicon in the same and other species. Furthermore, within a single host-plasmid pair three distinct patterns of adaptive evolution led to increased plasmid persistence: i) mutations in the replication protein gene (trfA1); ii) the acquisition by the resistance plasmid of a transposon from a co-residing plasmid encoding a putative toxin-antitoxin system; iii) a mutation in the host's global transcriptional regulator gene fur. Since each of these evolutionary solutions individually have been shown to increase plasmid persistence in other plasmid-host pairs, our work points towards common mechanisms of plasmid stabilization. These could become the targets of future alternative drug therapies to slow down the spread of antibiotic resistance.
Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana , Evolução Molecular , Plasmídeos , Adaptação Biológica , Humanos , Mutação , Seleção GenéticaRESUMO
Wastewater treatment plants (WWTPs) are one of the main sources of pharmaceutical residue in surface water. Epilithic biofilms were collected downstream from 12 WWTPs of various types and capacities to study the impacts of their discharge through the changes in biofilm composition (compared to a corresponding upstream biofilm) in terms of pharmaceutical concentrations and bacterial community modifications (microbial diversity and resistance integrons). The biofilm is a promising indicator to evaluate the impacts of WWTPs on the surrounding aquatic environment. Indeed, the use of biofilms reveals contamination hot spots. All of the downstream biofilms present significant concentrations (up to 965ng/g) of five to 11 pharmaceuticals (among the 12 analysed). Moreover, the exposition to the discharge point increases the presence of resistance integrons (three to 31 fold for Class 1) and modifies the diversity of the bacterial communities (for example cyanobacteria). The present study confirms that the discharge from WWTPs has an impact on the aquatic environment.
Assuntos
Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Biofilmes/efeitos dos fármacos , Rios/química , Rios/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/toxicidadeRESUMO
Biofilms dominate microbial life, and their importance for human health and the environment can no longer be dismissed. Nevertheless many of the processes governing this form of microbial growth are still poorly understood. This includes the horizontal exchange of genetic information, which is a major driver in bacterial evolution and rapid adaptation, exemplified by the alarming spread of multi-drug resistance among pathogens mediated by plasmids. Biofilms are often considered hot spot for horizontal gene transfer, yet several studies have shown that plasmid transfer is limited to the outer layers. On the basis of results from decades of research we analyse this paradox and discuss the mechanisms by which biofilm growth can promote the initial transfer of some plasmids, but also limit further plasmid invasion into the population or community. If we want to adequately promote or combat horizontal gene spread in biofilms, we need to gain better insight into the physicochemical and biological mechanisms that control this process.
RESUMO
In this study, antibiotic resistance class 3 integrons in Gram-negative bacteria isolated from hospital sewage and sludge and their genetic contents were characterised. Two samples of hospital effluent from France and Luxembourg and one sample of sludge from a wastewater treatment plant in France were collected in 2010 and 2011. Bacteria were cultured on selective agar plates and integrons were detected in colonies by quantitative PCR. Integron gene cassette arrays and their genetic environments were analysed by next-generation sequencing. Three class 3 integron-positive isolates were detected, including Acinetobacter johnsonii LIM75 (French hospital effluent), Aeromonas allosaccharophila LIM82 (sludge) and Citrobacter freundii LIM86 (Luxembourg hospital effluent). The gene cassettes were all implicated in antibiotic (aminoglycoside and ß-lactam) or antiseptic resistance. An oxacillinase gene cassette (blaOXA-10, blaOXA-368 or blaOXA-2) was found in each integron. All of the class 3 integrons were located on small mobilisable plasmids. This study highlights the role of class 3 integrons in the dissemination of clinically relevant antibiotic resistance genes, notably oxacillinase genes, in hospital effluent.