Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(18): 26122-26136, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906888

RESUMO

A wavelength tunable femtosecond optical parametric oscillator pumped by the second harmonic of a Yb: KGW solid state oscillator was investigated. The intracavity group delay dispersion was positive, and soliton condition was satisfied by introducing negative nonlinearity from cascaded quadratic nonlinearity (CQN). Two different approaches were investigated - CQN induced by the same amplifying nonlinear crystal or CQN induced by an additional second harmonic generating nonlinear crystal inside the same resonator. The second crystal was shown to correct the resonator misalignment induced by the rotation of the amplifying crystal as the wavelength was tuned in the range of 770-970 nm. It simultaneously compensated positive resonator GDD offsets of +/- 1000 fs2 with +/- 5% SHG power losses, simulating a method for compensation of GDD ripples in a broadband mirror.

2.
iScience ; 24(3): 102184, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33718836

RESUMO

Two-photon (2-P) all-optical approaches combine in vivo 2-P calcium imaging and 2-P optogenetic modulations. Here, firstly, we combined in vivo juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in mouse visual cortex to tune our detection algorithm towards a 100% specific identification of action potential-related calcium transients. Secondly, we minimized photostimulation artifacts by using extended-wavelength-spectrum laser sources for optogenetic stimulation. We achieved artifact-free all-optical experiments performing optogenetic stimulation from 1100 nm to 1300 nm. Thirdly, we determined the spectral range for maximizing efficacy until 1300 nm. The rate of evoked transients in GCaMP6f/C1V1-co-expressing cortical neurons peaked already at 1100 nm. By refining spike detection and defining 1100 nm as the optimal wavelength for artifact-free and effective GCaMP6f/C1V1-based all-optical physiology, we increased the translational value of these approaches, e.g., for the development of network-based therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA