Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 161: 156077, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356495

RESUMO

BACKGROUND: Studies have shown that lipoproteins, such as LDL and VLDL, as well as its major protein component ApoE2 impact on macrophage polarization important in atherosclerosis. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a key regulator of lipoprotein receptor expression. The present study investigated the effect of the VLDL/VLDL-receptor (VLDL-R) axis on mononuclear cell polarization, as well as the role of PCSK9 and PCSK9 inhibitors (PCSK9i) within this network. METHODS: Human monocytic THP-1 cells and human monocyte-derived macrophages isolated from peripheral blood mononuclear cells (PBMC) were treated with either LPS/IFN-γ to induce a pro-inflammatory phenotype, or with IL-4/IL-13 to induce an anti-inflammatory phenotype. Cells were then subjected to further treatments by lipoproteins, PCSK9, PCSK9i and lipoprotein receptor blockers. RESULTS: LPS/IFN-γ treatment promoted a pro-inflammatory state with an increased expression of pro-inflammatory mediators such as TNF-α, CD80 and IL-1ß. VLDL co-treatment induced a switch of this pro-inflammatory phenotype to an anti-inflammatory phenotype. In pro-inflammatory cells, VLDL significantly decreased the expression of pro-inflammatory markers e.g., TNF-α, CD80, and IL-1ß. These effects were eliminated by PCSK9 and restored by co-incubation with a specific anti-PCSK9 monoclonal antibody (PCSK9i). Migration assays demonstrated that pro-inflammatory cells displayed a significantly higher invasive capacity when compared to untreated cells or anti-inflammatory cells. Moreover, pro-inflammatory cell chemotaxis was significantly decreased by VLDL-mediated acquisition of the anti-inflammatory phenotype. PCSK9 significantly lessened this VLDL-mediated migration inhibition, which was reversed by the PCSK9i. CONCLUSION: VLDL promotes mononuclear cell differentiation towards an anti-inflammatory phenotype. PCSK9, via its capacity to inhibit VLDL-R expression, reverses the VLDL-mediated anti-inflammatory action, thereby promoting a pro-inflammatory phenotype. Thus, PCSK9 targeting therapies may exert anti-inflammatory properties within the vessel wall.


Assuntos
Leucócitos Mononucleares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Lipoproteínas , Anti-Inflamatórios
2.
Heart Vessels ; 38(10): 1277-1287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418015

RESUMO

Despite the progress in understanding left atrial substrate and arrhythmogenesis, only little is known about conduction characteristics in atrial fibrillation patients with various stages of fibrotic atrial cardiomyopathy (FACM). This study evaluates left atrial conduction times and conduction velocities based on high-density voltage and activation maps in sinus rhythm (CARTO®3 V7) of 53 patients with persistent atrial fibrillation (LVEF 60% (55-60 IQR), LAVI 39 ml/m2 (31-47 IQR), LApa 24 ± 6 cm2). Measurements were made in low voltage areas (LVA ≤ 0.5 mV) and normal voltage areas (NVA ≥ 1.5 mV) at the left atrial anterior and posterior walls. Maps of 28 FACM and 25 no FACM patients were analyzed (19 FACM I/II, 9 FACM III/IV, LVA 14 ± 11 cm2). Left atrial conduction time averaged to 110 ± 24 ms but was shown to be prolonged in FACM (119 ms, + 17%) when compared to no FACM patients (101 ms, p = 0.005). This finding was pronounced in high-grade FACM (III/IV) (133 ms, + 31.2%, p = 0.001). In addition, the LVA extension correlated significantly with the left atrial conduction time (r = 0.56, p = 0.002). Conduction velocities were overall slower in LVA than in NVA (0.6 ± 0.3 vs. 1.3 ± 0.5 m/s, -51%, p < 0.001). Anterior conduction appeared slower than posterior, which was significant in NVA (1 vs. 1.4 m/s, -29%, p < 0.001) but not in LVA (0.6 vs. 0.8 m/s, p = 0.096). FACM has a significant influence on left atrial conduction characteristics in patients with persistent atrial fibrillation. Left atrial conduction time prolongs with the grade of FACM and the quantitative expanse of LVA up to 31%. LVAs show a 51% conduction velocity reduction compared to NVA. Moreover, regional conduction velocity differences are present in the left atrium when comparing anterior to posterior walls. Our data may influence individualized ablation strategies.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ablação por Cateter , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Sistema de Condução Cardíaco , Átrios do Coração , Frequência Cardíaca , Cardiomiopatias/diagnóstico , Fibrose
3.
Artif Organs ; 46(1): 155-158, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34605037

RESUMO

A patient was admitted in cardiogenic shock and a constant decrease of pump flow requiring combined inotropic support. To evaluate the cause, echocardiography and a ramp test were performed. The results suggested a LVAD related problem - particularly a suspected outflow graft obstruction. Wether CT scan nor angiography confirmed the assumption. However, a post-mortem LVAD examination revealed an outflow obstruction caused by a fungal thrombus formation invisible for standard imaging procedures.


Assuntos
Candida/isolamento & purificação , Coração Auxiliar/microbiologia , Choque Cardiogênico/etiologia , Trombose/microbiologia , Candidíase/patologia , Ecocardiografia , Coração Auxiliar/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/terapia , Tomografia Computadorizada por Raios X
4.
Biochem Biophys Res Commun ; 485(2): 312-318, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232185

RESUMO

Monocyte migration is a key element in atherosclerosis. LDL-C facilitates monocyte migration via induction of CCR2. PCSK9 regulates cell surface expression of the LDL-R and is expressed in vascular smooth muscle cells (VSMCs). The present study was done to investigate the regulation of PCSK9 in VSMCs and its impact on monocyte function. METHODS AND RESULTS: PCSK9 mRNA and protein levels were upregulated in VSMCs by the TLR-4 ligand LPS, whereas TGF-ß or angiotensin II had no effect. Induction of PCSK9 was selectively inhibited by TLR-4 blockade and further downstream by the SAPK/JNK-inhibitor SP600125, whereas inhibitors of ERK1/2, p38 or PI3-kinase pathways had no effect. Incubation of monocytes in conditioned media from LPS-stimulated VSMCs resulted in a significant reduction of LDL-R levels on monocytes, comparable to the effects of recombinant PCSK9. LDL-C increased monocyte CCR2 expression, which augmented monocyte migration towards MCP-1. This LDL-C dependent monocyte chemotaxis was inhibited by supernatants from LPS-stimulated VSMCs, similar to recombinant PCSK9 and a specific LDL-R blocking antibody. CONCLUSION: PCSK9 is regulated in VSMCs by TLR-4 - SAPK/JNK signaling, a pathway important in inflammation and metabolism. VSMC-derived PCSK9 reduces monocyte LDL-R expression, affecting LDL-C/LDL-R-mediated CCR2-expression on monocytes, which is crucial to cell motility and atherogenesis.


Assuntos
Monócitos/imunologia , Pró-Proteína Convertase 9/imunologia , Receptores CCR2/imunologia , Animais , Aterosclerose/imunologia , Linhagem Celular , Células Cultivadas , Quimiotaxia de Leucócito , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Masculino , Monócitos/citologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/imunologia , Ratos Sprague-Dawley , Receptores CCR2/análise , Receptor 4 Toll-Like/imunologia
5.
BMC Med Imaging ; 17(1): 51, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835220

RESUMO

BACKGROUND: Cardiovascular magnetic resonance feature tracking (CMR-FT) is a novel tissue tracking technique developed for noninvasive assessment of myocardial motion and deformation. This preliminary study aimed to evaluate the observer's reproducibility of CMR-FT in a small animal (mouse) model and define sample size calculation for future trials. METHODS: Six C57BL/6 J mice were selected from the ongoing experimental mouse model onsite and underwent CMR with a 3 Tesla small animal MRI scanner. Myocardial deformation was analyzed using dedicated software (TomTec, Germany) by two observers. Left ventricular (LV) longitudinal, circumferential and radial strain (EllLAX, EccSAX and ErrSAX) were calculated. To assess intra-observer agreement data analysis was repeated after 4 weeks. The sample size required to detect a relative change in strain was calculated. RESULTS: In general, EccSAX and EllLAX demonstrated highest inter-observer reproducibility (ICC 0.79 (0.46-0.91) and 0.73 (0.56-0.83) EccSAX and EllLAX respectively). In contrast, at the intra-observer level EllLAX was more reproducible than EccSAX (ICC 0.83 (0.73-0.90) and 0.74 (0.49-0.87) EllLAX and EccSAX respectively). The reproducibility of ErrSAX was weak at both observer levels. Preliminary sample size calculation showed that a small study sample (e.g. ten animals to detect a relative 10% change in EccSAX) could be sufficient to detect changes if parameter variability is low. CONCLUSIONS: This pilot study demonstrates good to excellent inter- and intra-observer reproducibility of CMR-FT technique in small animal model. The most reproducible measures are global circumferential and global longitudinal strain, whereas reproducibility of radial strain is weak. Furthermore, sample size calculation demonstrates that a small number of animals could be sufficient for future trials.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Animais , Tamanho Corporal , Camundongos , Camundongos Endogâmicos C57BL , Variações Dependentes do Observador , Projetos Piloto , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tamanho da Amostra , Software
6.
Nephrol Dial Transplant ; 31(5): 789-97, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26333546

RESUMO

BACKGROUND: The matrix metalloproteinases (MMP) MMP-2 and MMP-9 are physiological regulators of vascular remodelling. Their dysregulation could contribute to vascular calcification. We examined the role of the MMP-2 and MMP-9 in uraemic vascular calcification in vivo and in vitro. METHODS: The impact of pharmacological MMP inhibition on the development of media calcifications was explored in an aggressive animal model of uraemic calcification. In addition, the selective effects of addition and inhibition, respectively, of MMP-2 and MMP-9 on calcium-/phosphate-induced calcifications were studied in a murine cell line of vascular smooth muscle cells (VSMCs). RESULTS: High-dose calcitriol treatment of uraemic rats given a high phosphate diet induced massive calcifications, apoptosis and increased gene expressions of MMP-2, MMP-9 and of osteogenic transcription factors and proteins in aortic VSMC. The MMP inhibitor doxycycline prevented the VSMC transdifferentiation to osteoblastic cells, suppressed transcription of mediators of matrix remodelling and almost completely blocked aortic calcifications while further increasing apoptosis. Similarly, specific inhibitors of either MMP-2 or -9, or of both gelatinases (Ro28-2653) and a selective knockdown of MMP-2/-9 mRNA expression blocked calcification of murine VSMC induced by calcification medium (CM). In contrast to MMP inhibition, recombinant MMP-2 or MMP-9 enhanced CM-induced calcifications and the secretion of gelatinases. CONCLUSIONS: These data indicate that both gelatinases provide essential signals for phenotypic VSMC conversion, matrix remodelling and the initiation of vascular calcification. Their inhibition seems a promising strategy in the prevention of vascular calcifications.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Uremia/fisiopatologia , Calcificação Vascular/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Metaloproteinase 2 da Matriz/química , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
8.
Curr Opin Lipidol ; 26(4): 338-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26103607

RESUMO

PURPOSE OF REVIEW: The proprotein convertases subtilisin/kexin (PCSKs) are endoproteases identified as activators of precursors from hormones and peptides. On the basis of the variety of substrates and regulation in disease, they have been recognized as mediators in atherogenesis. The discovery of PCSK9, which regulates low-density lipoprotein receptor cell membrane availability, has led to a resurgence of interest in these enzymes and their function in cardiovascular diseases. RECENT FINDINGS: Recent data demonstrate that PCSKs are expressed in human atheroma and are regulated in animal models of atherosclerosis. In animal models, inhibition of PCSKs, such as PCSK3, affects cell proliferation and migration as well as inflammation, reducing atherosclerosis. In addition, targeting PCSK9 lowers cholesterol levels and has now been demonstrated to lessen vascular lesion formation in mice. Experimentally investigated novel anti-PCSK9 strategies include genome editing and vaccination. Furthermore, studies show that PCSKs contribute to the initiation and progression of cardiometabolic risk factors, such as insulin resistance and obesity. SUMMARY: PCSKs affect cardiovascular diseases on multiple levels, including atherosclerotic lesion formation as well as their contribution to cardiometabolic risk factors. PCSK9 is a key regulator of plasma cholesterol levels, thereby potentially affecting atherosclerosis and has rapidly emerged as a pharmacological target.


Assuntos
Aterosclerose/enzimologia , Pró-Proteína Convertases/metabolismo , Animais , Insuficiência Cardíaca/enzimologia , Humanos , Síndrome Metabólica/enzimologia
9.
Eur Heart J ; 35(33): 2224-31b, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24603307

RESUMO

AIMS: Sympathetic stimulation induces left ventricular hypertrophy and is associated with increased cardiovascular risk. Catheter-based renal denervation (RDN) has been shown to reduce sympathetic outflow and blood pressure (BP). The present multi-centre study aimed to investigate the effect of RDN on anatomic and functional myocardial parameters, assessed by cardiac magnetic resonance (CMR), in patients with resistant hypertension. METHODS AND RESULTS: Cardiac magnetic resonance was performed in 72 patients (mean age 66 ± 10 years) with resistant hypertension (55 patients underwent RDN, 17 served as controls) at baseline and after 6 months. Clinical data and CMR results were analysed blindly. Renal denervation significantly reduced systolic and diastolic BP by 22/8 mm Hg and left ventricular mass index (LVMI) by 7.1% (46.3 ± 13.6 g/m(1.7) vs. 43.0 ± 12.6 g/m(1.7), P < 0.001) without changes in the control group (41.9 ± 10.8 g/m(1.7) vs. 42.0 ± 9.7 g/m(1.7), P = 0.653). Ejection fraction (LVEF) in patients with impaired LVEF at baseline (<50%) significantly increased after RDN (43% vs. 50%, P < 0.001). Left ventricular circumferential strain as a surrogate of diastolic function in the subgroup of patients with reduced strain at baseline increased by 21% only in the RDN group (-14.8 vs. -17.9; P = 0.001) and not in control patients (-15.5 vs. -16.4, P = 0.508). CONCLUSIONS: Catheter-based RDN significantly reduced BP and LVMI and improved EF and circumferential strain in patients with resistant hypertension, occurring partly BP independently.


Assuntos
Hipertensão/cirurgia , Simpatectomia/métodos , Idoso , Análise de Variância , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Ablação por Cateter , Resistência a Medicamentos , Feminino , Átrios do Coração , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Angiografia por Ressonância Magnética , Masculino , Estresse Fisiológico/fisiologia , Função Ventricular Esquerda/fisiologia
10.
Circ Res ; 110(3): 394-405, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22207709

RESUMO

RATIONALE: The nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of gene transcription in vascular cells and mediates the vascular protection observed with antidiabetic glitazones. OBJECTIVE: To determine the molecular mechanism of ligand-dependent transrepression in vascular smooth muscle cells and their impact on the vascular protective actions of PPARγ. METHODS AND RESULTS: Here, we report a molecular pathway in vascular smooth muscle cells by which ligand-activated PPARγ represses transcriptional activation of the matrix-degrading matrix metalloproteinase-9 (MMP-9) gene, a crucial mediator of vascular injury. PPARγ-mediated transrepression of the MMP-9 gene was dependent on the presence of the high-mobility group A1 (HMGA1) protein, a gene highly expressed in vascular smooth muscle cells, newly identified by oligonucleotide array expression analysis. Transrepression of MMP-9 by PPARγ and regulation by HMGA1 required PPARγ SUMOylation at K367. This process was associated with formation of a complex between PPARγ, HMGA1, and the SUMO E2 ligase Ubc9 (ubiquitin-like protein SUMO-1 conjugating enzyme). After PPARγ ligand stimulation, HMGA1 and PPARγ were recruited to the MMP-9 promoter, which facilitated binding of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor), a nuclear corepressor involved in transrepression. The relevance of HMGA1 for vascular PPARγ signaling was underlined by the complete absence of vascular protection through a PPARγ ligand in HMGA1(-/-) mice after arterial wire injury. CONCLUSIONS: The present data suggest that ligand-dependent formation of HMGA1-Ubc9-PPARγ complexes facilitates PPARγ SUMOylation, which results in the prevention of SMRT corepressor clearance and induction of MMP-9 transrepression. These data provide new information on PPARγ-dependent vascular transcriptional regulation and help us to understand the molecular consequences of therapeutic interventions with PPARγ ligands in the vasculature.


Assuntos
Proteína HMGA1a/metabolismo , Músculo Liso Vascular/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Animais , Endotelina-1/metabolismo , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Proteína HMGA1a/deficiência , Proteína HMGA1a/genética , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/lesões , NF-kappa B/metabolismo , Tiazolidinedionas/farmacologia , Enzimas de Conjugação de Ubiquitina/metabolismo
11.
PLoS One ; 19(5): e0303540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820336

RESUMO

INTRODUCTION: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.


Assuntos
Transplante de Coração , Miócitos Cardíacos , Humanos , Masculino , Transplante de Coração/efeitos adversos , Pessoa de Meia-Idade , Feminino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Adulto , Acoplamento Excitação-Contração , Microvasos/patologia , Microvasos/fisiopatologia , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sinalização do Cálcio
12.
Cell Commun Signal ; 11: 49, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23889985

RESUMO

BACKGROUND: Insulin signaling is tightly controlled by tyrosine dephosphorylation of the insulin receptor through protein-tyrosine-phosphatases (PTPs). DEP-1 is a PTP dephosphorylating tyrosine residues in a variety of receptor tyrosine kinases. Here, we analyzed whether DEP-1 activity is differentially regulated in liver, skeletal muscle and adipose tissue under high-fat diet (HFD), examined the role of DEP-1 in insulin resistance in vivo, and its function in insulin signaling. RESULTS: Mice were fed an HFD for 10 weeks to induce obesity-associated insulin resistance. Thereafter, HFD mice were subjected to systemic administration of specific antisense oligonucleotides (ASOs), highly accumulating in hepatic tissue, against DEP-1 or control ASOs. Targeting DEP-1 led to improvement of insulin sensitivity, reduced basal glucose level, and significant reduction of body weight. This was accompanied by lower insulin and leptin serum levels. Suppression of DEP-1 in vivo also induced hyperphosphorylation in the insulin signaling cascade of the liver. Moreover, DEP-1 physically associated with the insulin receptor in situ, and recombinant DEP-1 dephosphorylated the insulin receptor in vitro. CONCLUSIONS: These results indicate that DEP-1 acts as an endogenous antagonist of the insulin receptor, and downregulation of DEP-1 results in an improvement of insulin sensitivity. DEP-1 may therefore represent a novel target for attenuation of metabolic diseases.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Insulina/metabolismo , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/etiologia , Especificidade de Órgãos , Fenótipo , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais , Tirosina/metabolismo
13.
Circ Res ; 109(5): 524-33, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21719759

RESUMO

RATIONALE: Positive outward remodeling of pre-existing collateral arteries into functional conductance arteries, arteriogenesis, is a major endogenous rescue mechanism to prevent cardiovascular ischemia. Collateral arterial growth is accompanied by expression of kinin precursor. However, the role of kinin signaling via the kinin receptors (B1R and B2R) in arteriogenesis is unclear. OBJECTIVE: The purpose of this study was to elucidate the functional role and mechanism of bradykinin receptor signaling in arteriogenesis. METHODS AND RESULTS: Bradykinin receptors positively affected arteriogenesis, with the contribution of B1R being more pronounced than B2R. In mice, arteriogenesis upon femoral artery occlusion was significantly reduced in B1R mutant mice as evidenced by reduced microspheres and laser Doppler flow perfusion measurements. Transplantation of wild-type bone marrow cells into irradiated B1R mutant mice restored arteriogenesis, whereas bone marrow chimeric mice generated by reconstituting wild-type mice with B1R mutant bone marrow showed reduced arteriogenesis after femoral artery occlusion. In the rat brain 3-vessel occlusion arteriogenesis model, pharmacological blockade of B1R inhibited arteriogenesis and stimulation of B1R enhanced arteriogenesis. In the rat, femoral artery ligation combined with arterial venous shunt model resulted in flow-driven arteriogenesis, and treatment with B1R antagonist R715 decreased vascular remodeling and leukocyte invasion (monocytes) into the perivascular tissue. In monocyte migration assays, in vitro B1R agonists enhanced migration of monocytes. CONCLUSIONS: Kinin receptors act as positive modulators of arteriogenesis in mice and rats. B1R can be blocked or therapeutically stimulated by B1R antagonists or agonists, respectively, involving a contribution of peripheral immune cells (monocytes) linking hemodynamic conditions with inflammatory pathways.


Assuntos
Artérias/crescimento & desenvolvimento , Receptor B1 da Bradicinina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Transdução de Sinais/fisiologia , Animais , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/fisiopatologia , Artérias/fisiopatologia , Artérias Cerebrais/crescimento & desenvolvimento , Artéria Femoral/crescimento & desenvolvimento , Membro Posterior/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/fisiopatologia , Ratos , Ratos Sprague-Dawley
14.
ASAIO J ; 69(9): 827-834, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146602

RESUMO

Lysis therapy is an established treatment option for intra-pump thrombosis of left ventricular assist devices (LVADs). In clinical routine, we observed repeated cases of acute outflow graft occlusions (OGO) associated with lysis therapy with need for urgent intervention. The aim of this investigation was to gain understanding of this observation. We screened data of 962 HeartWare ventricular assist device (HVAD) patients. One hundred twenty (13.8%) had intra-pump thromboses; 58 were treated with recombinant tissue-type plasminogen activator (rtPA). Mean age was 53.0 ± 11.1 years; 84.9% were male. In 13 (24.5%) patients, OGO occurred following rtPA-lysis. These patients showed an increase in left ventricular function (18.45% ± 12.62% to 27.73% ± 10.57%; p = 0.056), more frequent 1:1 aortic valve opening (OGO+: +36.4%; OGO-: +7.4%; p = 0.026), a decrease in LVAD pulsatility within 12 months prior intra-pump thrombosis (OGO+: -0.8 L/min [interquartile range {IQR}, -1.4 to -0.4 L/min]; OGO-: -0.3 L/min [IQR, -0.9 to 0.1 L/min]; p = 0.038) and lower HVAD flows at admission (OGO+: 6.7 L/min [IQR, 6.1-7.4 L/min]; OGO-: 8.3 L/min [IQR, 6.9-9.3 L/min]; p = 0.013), indicating a subclinical OGO prior intra-pump thrombosis. There were no differences in implantation techniques, blood parameters, and lysis strategy. Subclinical OGO represented a major risk factor for acute OGO following rtPA lysis therapy. We here propose an algorithm for risk stratification and dealing with patients presenting this first-described complication. Further research is required to confirm our results and decipher the underlying pathomechanism. http://links.lww.com/ASAIO/B97.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Trombose , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Coração Auxiliar/efeitos adversos , Insuficiência Cardíaca/terapia , Resultado do Tratamento , Estudos Retrospectivos , Trombose/etiologia , Trombose/terapia
15.
J Cardiovasc Dev Dis ; 10(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623329

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) imaging with gadolinium-based contrast agents offers unique non-invasive insights into cardiac tissue composition. Myocardial extracellular volume (ECV) has evolved as an objective and robust parameter with broad diagnostic and prognostic implications. For the gadolinium compound gadobutrol, the recommended dose for cardiac imaging, including ECV measurements, is 0.1 mmol/kg (single dose). This dose was optimized for late enhancement imaging, a measure of focal fibrosis. Whether a lower dose is sufficient for ECV measurements is unknown. We aim to evaluate the accuracy of ECV measurements using a half dose of 0.05 mmol/kg gadobutrol compared to the standard single dose of 0.1 mmol/kg. METHODS AND RESULTS: From a contemporary trial (NCT04747366, registered 10 February 2021), a total of 25 examinations with available T1 mapping before and after 0.05 and 0.1 mmol/kg gadobutrol were analyzed. ECV values were calculated automatically from pre- and post-contrast T1 relaxation times. T1 and ECV Measurements were performed in the midventricular septum. ECV values after 0.05 and 0.1 mmol/kg gadobutrol were correlated (R2 = 0.920, p < 0.001). ECV values after 0.05 mmol/kg had a bias of +0.9% (95%-CI [0.4; 1.4], p = 0.002) compared to 0.1 mmol/kg gadobutrol, with limits of agreement from -1.5 to 3.3%. CONCLUSIONS: CMR with a half dose of 0.05 mmol/kg gadobutrol overestimated ECV by 0.9% compared with a full dose of 0.1 mmol/kg, necessitating adjustment of normal values when using half-dose ECV imaging.

16.
Cerebrovasc Dis ; 33(5): 419-29, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456527

RESUMO

BACKGROUND AND PURPOSE: Restoration of cerebrovascular reserve capacity (CVRC) depends on the recruitment and positive outward remodeling of preexistent collaterals (arteriogenesis). With this study, we provide functional evidence that granulocyte colony-stimulating factor (G-CSF) augments therapeutic arteriogenesis in two animal models of cerebral hypoperfusion. We identified an effective dosing regimen that improved CVRC and stimulated collateral growth, thereby improving the outcome after experimentally induced stroke. METHODS: We used two established animal models of (a) cerebral hypoperfusion (mouse, common carotid artery ligation) and (b) cerebral arteriogenesis (rat, 3-vessel occlusion). Following therapeutic dose determination, both models received either G-CSF, 40 µg/kg every other day, or vehicle for 1 week. Collateral vessel diameters were measured following latex angiography. Cerebrovascular reserve capacities were assessed after acetazolamide stimulation. Mice with left common carotid artery occlusion (CCAO) were additionally subjected to middle cerebral artery occlusion, and stroke volumes were assessed after triphenyltetrazolium chloride staining. Given the vital role of monocytes in arteriogenesis, we assessed (a) the influence of G-CSF on monocyte migration in vitro and (b) monocyte counts in the adventitial tissues of the growing collaterals in vivo. RESULTS: CVRC was impaired in both animal models 1 week after induction of hypoperfusion. While G-CSF, 40 µg/kg every other day, significantly augmented cerebral arteriogenesis in the rat model, 50 or 150 µg/kg every day did not show any noticeable therapeutic impact. G-CSF restored CVRC in mice (5 ± 2 to 12 ± 6%) and rats (3 ± 4 to 19 ± 12%). Vessel diameters changed accordingly: in rats, the diameters of posterior cerebral arteries (ipsilateral: 209 ± 7-271 ± 57 µm; contralateral: 208 ± 11-252 ± 28 µm) and in mice the diameter of anterior cerebral arteries (185 ± 15-222 ± 12 µm) significantly increased in the G-CSF groups compared to controls. Stroke volume in mice (10 ± 2%) was diminished following CCAO (7 ± 4%) and G-CSF treatment (4 ± 2%). G-CSF significantly increased monocyte migration in vitro and perivascular monocyte numbers in vivo. CONCLUSION: G-CSF augments cerebral collateral artery growth, increases CVRC and protects from experimentally induced ischemic stroke. When comparing three different dosing regimens, a relatively low dosage of G-CSF was most effective, indicating that the common side effects of this cytokine might be significantly reduced or possibly even avoided in this indication.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Círculo Arterial do Cérebro/crescimento & desenvolvimento , Circulação Colateral/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Animais , Arteriopatias Oclusivas/patologia , Estenose das Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/patologia , Círculo Arterial do Cérebro/efeitos dos fármacos , Interpretação Estatística de Dados , Hemodinâmica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Recuperação de Função Fisiológica
17.
ASAIO J ; 68(11): 1332-1338, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184090

RESUMO

As patients on long-term left ventricular assist device (LVAD) face a substantial risk for open cardiac reoperation, interventional treatment approaches are becoming increasingly important in this population. We evaluated data of 871 patients who were on LVAD support between January 1, 2016 and December 1, 2020. Interventional treatments for LVAD-associated complications were performed in 76 patients. Seventeen patients underwent transcatheter aortic valve replacements (TAVR) and 61 patients underwent outflow graft interventions (OGI). TAVR improved symptoms in patients with severe symptomatic aortic regurgitation. Postinterventional complications included aggravation of preexisting right heart failure (RHF), third-degree atrioventricular block, and intrapump thrombosis (in 3 [16.7%], 2 [11.1%], and 1 [5.6%] patients, respectively). In outflow graft obstructions, OGI led to recovery of LVAD flow ( p < 0.001), unloading of the left ventricle ( p = 0.004), decrease of aortic valve opening time ( p = 0.010), and improvement of right heart function ( p < 0.001). Complications included bleeding, RHF, and others (in 9 [10.8%], 5 [6.0%], and 5 [6.0%] patients, respectively). Eight (9.6%) patients died within the hospital stay after OGI, including mortality secondary to prolonged cardiogenic shock. In conclusion, interventional procedures are a feasible and safe treatment modality for LVAD-associated complications.


Assuntos
Insuficiência da Valva Aórtica , Insuficiência Cardíaca , Coração Auxiliar , Humanos , Coração Auxiliar/efeitos adversos , Resultado do Tratamento , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/cirurgia , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/diagnóstico , Valva Aórtica , Estudos Retrospectivos
18.
Am J Physiol Heart Circ Physiol ; 301(1): H115-22, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478409

RESUMO

Exercise-induced cardiac hypertrophy has been recently identified to be regulated in a sex-specific manner. In parallel, women exhibit enhanced exercise-mediated lipolysis compared with men, which might be linked to cardiac responses. The aim of the present study was to assess if previously reported sex-dependent differences in the cardiac hypertrophic response during exercise are associated with differences in cardiac energy substrate availability/utilization. Female and male C57BL/6J mice were challenged with active treadmill running for 1.5 h/day (0.25 m/s) over 4 wk. Mice underwent cardiac and metabolic phenotyping including echocardiography, small-animal PET, peri-exercise indirect calorimetry, and analysis of adipose tissue (AT) lipolysis and cardiac gene expression. Female mice exhibited increased cardiac hypertrophic responses to exercise compared with male mice, measured by echocardiography [percent increase in left ventricular mass (LVM): female: 22.2 ± 0.8%, male: 9.0 ± 0.2%; P < 0.05]. This was associated with increased plasma free fatty acid (FFA) levels and augmented AT lipolysis in female mice after training, whereas FFA levels from male mice decreased. The respiratory quotient during exercise was significantly lower in female mice indicative for preferential utilization of fatty acids. In parallel, myocardial glucose uptake was reduced in female mice after exercise, analyzed by PET {injection dose (ID)/LVM [%ID/g]: 36.8 ± 3.5 female sedentary vs. 28.3 ± 4.3 female training; P < 0.05}, whereas cardiac glucose uptake was unaltered after exercise in male counterparts. Cardiac genes involved in fatty acid uptake/oxidation in females were increased compared with male mice. Collectively, our data demonstrate that sex differences in exercise-induced cardiac hypertrophy are associated with changes in cardiac substrate availability and utilization.


Assuntos
Cardiomegalia/fisiopatologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Tecido Adiposo/metabolismo , Animais , Western Blotting , Calorimetria , Cardiomegalia/diagnóstico por imagem , Ecocardiografia , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Glicogênio/metabolismo , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Ácido Láctico/metabolismo , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Tomografia por Emissão de Pósitrons , RNA/biossíntese , RNA/genética , Compostos Radiofarmacêuticos , Corrida/fisiologia , Caracteres Sexuais
19.
Biochem Biophys Res Commun ; 404(1): 448-52, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21138731

RESUMO

BACKGROUND: CD40 is a receptor expressed on a wide range of cells such as leukocytes and endothelial cells (EC). As a member of the tumor necrosis factor (TNF) superfamily the activation of CD40 by CD40-ligand (CD40L) plays a crucial role for the development and progression of a variety of inflammatory processes including atherosclerosis. The aim of the present study was to investigate the effect of CD40/CD40L interaction on leukocyte adhesion to the endothelium and on endothelial cell migration. METHODS AND RESULTS: Human umbilical vein endothelial cells (HUVEC) were stimulated with either stable transfectants of mouse myeloma cells expressing the CD40L or wild type cells (4 h). Subsequently adhesion of leukocytes expressing Sialyl Lewis X, the counterpart for E-selectin (HL60 cells), was measured under shear stress (2-2.6 dyne/cm(2)) using a flow chamber adhesion assay. Stimulation of CD40 led to a significant increase of E-selectin dependent adhesion of leukocytes to the endothelium. Incubation of cells with either the CD40L blocking antibody TRAP-1 or the E-selectin blocking antibody BBA2 during CD40 stimulation completely abolished adhesion of leukocytes to HUVEC. Similar results were found in human cardiac microvasculature endothelial cells (HCMEC). In contrast stimulation of CD40 had no effect on adhesion of L-selectin expressing NALM6-L cells. Furthermore, CD40/CD40L interaction abrogated VEGF-induced migration of HUVEC compared to non-stimulated controls. In comparison experiments, stimulation of endothelial cells with VEGF led to a significant phosphorylation of ERK1/2, Akt, and eNOS. Stimulation of endothelial CD40 had no effect on VEGF-induced phosphorylation of ERK1/2. However, VEGF-induced activation of Akt and eNOS was reduced to baseline levels when endothelial CD40 was stimulated. CONCLUSION: CD40/CD40L interaction induces E-selectin dependent adhesion of leukocytes to human endothelial cells and reduces endothelial cell migration by inhibiting the Akt/eNOS signaling pathway.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Movimento Celular , Selectina E/metabolismo , Endotélio Vascular/fisiologia , Leucócitos/fisiologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HL-60 , Humanos , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/agonistas , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA