Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Children (Basel) ; 11(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38790599

RESUMO

BACKGROUND: Flatfeet in children are common, causing concern for parents due to potential symptoms. Technological advances, like 3D foot kinematic analysis, have revolutionized assessment. This review examined 3D assessments in paediatric idiopathic flexible flat feet (FFF). METHODS: Searches focused on paediatric idiopathic FFF in PubMed, Web of Science, and SCOPUS. Inclusion criteria required 3D kinematic and/or kinetic analysis during posture or locomotion, excluding non-idiopathic cases, adult feet, and studies solely on pedobarography or radiographs. RESULTS: Twenty-four studies met the criteria. Kinematic and kinetic differences between FFF and typical feet during gait were outlined, with frontal plane deviations like hindfoot eversion and forefoot supination, alongside decreased second peak vertical GRF. Dynamic foot classification surpassed static assessments, revealing varied movement patterns within FFF. Associations between gait characteristics and clinical measures like pain symptoms and quality of life were explored. Interventions varied, with orthoses reducing ankle eversion and knee and hip abductor moments during gait, while arthroereisis normalized calcaneal alignment and hindfoot eversion. CONCLUSIONS: This review synthesises research on 3D kinematics and kinetics in paediatric idiopathic FFF, offering insights for intervention strategies and further research.

3.
J Am Soc Echocardiogr ; 37(3): 276-284.e3, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37879379

RESUMO

OBJECTIVES: Prior data indicate a very rare risk of serious adverse drug reaction (ADR) to ultrasound enhancement agents (UEAs). We sought to evaluate the frequency of ADR to UEA administration in contemporary practice. METHODS: We retrospectively reviewed 4 US health systems to characterize the frequency and severity of ADR to UEA. Adverse drug reactions were considered severe when cardiopulmonary involvement was present and critical when there was loss of consciousness, loss of pulse, or ST-segment elevation. Rates of isolated back pain and headache were derived from the Mayo Clinic Rochester stress echocardiography database where systematic prospective reporting of ADR was performed. RESULTS: Among 26,539 Definity and 11,579 Lumason administrations in the Mayo Clinic Rochester stress echocardiography database, isolated back pain or headache was more frequent with Definity (0.49% vs 0.04%, P < .0001) but less common with Definity infusion versus bolus (0.08% vs 0.53%, P = .007). Among all sites there were 201,834 Definity and 84,943 Lumason administrations. Severe and critical ADR were more frequent with Lumason than with Definity (0.0848% vs 0.0114% and 0.0330% vs 0.0010%, respectively; P < .001 for each). Among the 3 health systems with >2,000 Lumason administrations, the frequency of severe ADR with Lumason ranged from 0.0755% to 0.1093% and the frequency of critical ADR ranged from 0.0293% to 0.0525%. Severe ADR rates with Definity were stable over time but increased in more recent years with Lumason (P = .02). Patients with an ADR to Lumason since the beginning of 2021 were more likely to have received a COVID-19 vaccination compared with matched controls (88% vs 75%; P = .05) and more likely to have received Moderna than Pfizer-Biotech (71% vs 26%, P < .001). CONCLUSION: Severe and critical ADR, while rare, were more frequent with Lumason, and the frequency has increased in more recent years. Additional work is needed to better understand factors, including associations with recently developed mRNA vaccines, which may be contributing to the increased rates of ADR to UEA since 2021.


Assuntos
Vacinas contra COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fluorocarbonos , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Incidência , Ecocardiografia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Cefaleia , Dor nas Costas
4.
J Biomech ; 160: 111827, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37844470

RESUMO

Clinical gait analysis has been used to inform treatment for over 50 years. Over that period there have been significant advances in motion capture technology and software development, driven in part by innovations in biomechanics. The aim of this paper is to review the current state of the art in gait analysis, mapping progress over the last five decades using the collective experience of the community of researchers and clinicians.An online survey was circulated to gait analysts to canvas opinion and responses were received from 229 people from 28 countries.Respondents identified the greatest progress in the areas of hardware, automation of processes, and software development. Despite laboratories being better equipped, many of today's challenges would have been very familiar to those working in 1973. Better algorithms and more evidence are needed to establish a secure link between gait analysis data and clinical decision making. Biomechanical models require further refinement to overcome well known limitations. Despite innovation, clinical gait analysis remains relatively unknown in the wider healthcare field.Growth in the global Gait Analysis communities and advances in remote communication technology have created new opportunities for taking on this challenge over the next 50 years. Hopefully, future innovation will lead to clinical gait analysis becoming more accessible, more flexible to real world mobility and more able to exploit emerging advanced modelling techniques.

5.
Gait Posture ; 102: 118-124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003196

RESUMO

BACKGROUND: Static and dynamic assessment of the medial longitudinal arch (MLA) is an essential aspect for measuring foot function in both clinical and research fields. Despite this, most multi-segment foot models lack the ability to directly track the MLA. This study aimed to assess various methods of MLA assessment, through motion capture of surface markers on the foot during various activities. METHODS: Thirty general population participants (mean age 20 years) without morphological alterations to their feet underwent gait analysis. Eight measures, each representing a unique definition of the MLA angle using either real only, or both real and floor-projected markers, were created. Participants performed tasks including standing, sitting, heel lift, Jack's test and walking, and had their Arch Height Index (AHI) measured using callipers. Multiple-criteria decision analysis (MCDA) with 10 criteria was utilised for selecting the optimal measure for dynamic and static MLA assessment. RESULTS: In static tasks, the standing MLA angle was significantly greater in all measures but one when compared to sitting, Jack's test and heel lift. The MLA angle in Jack's test was significantly greater than in heel lift in all measures. Across the compared dynamic tasks, significant differences were noted in all measures except one for foot strike in comparison to 50% gait cycle. All MLA measures held significant inverse correlations with MLA measured from static and dynamic tasks. Based on MCDA criteria, a measure comprising the first metatarsal head, fifth metatarsal base, navicular and heel markers was deemed the best for MLA assessment. SIGNIFICANCE: This study aligns with the current literature recommendations for the use of a navicular marker for characterising the MLA. It contrasts with previous recommendations and advocates against the use of projected markers in most situations.


Assuntos
, Ossos do Tarso , Humanos , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Pé/anatomia & histologia , Marcha , Caminhada , Ossos do Tarso/anatomia & histologia
6.
Comput Methods Biomech Biomed Engin ; 25(3): 308-319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289759

RESUMO

Marker-based clinical gait analysis and multi-segment foot models (MSFM) have been successfully used for the diagnosis and clinical management of various lower limb disorders. The accuracy and validity of the kinematics measured depend on the design of the model, as well as on the adherence to its inherent rigid body assumption. This study applies a Monte-Carlo based global sensitivity analysis to evaluate the efficacy of using 'rigid body error (σRBE)' in quantifying the rigidity of a MSFM marker-cluster. A regression model is proposed. It is concluded that σRBE is effective in quantifying rigidity.


Assuntos
, Marcha , Fenômenos Biomecânicos , Análise da Marcha , Extremidade Inferior
7.
Gait Posture ; 95: 160-163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500365

RESUMO

BACKGROUND: The Foot Profile Score (FPS) is a single score that summarises foot posture and dynamic foot motion during the gait cycle based on the kinematic data of the Oxford Foot Model. The FPS enables clinicians and researchers to quantify foot abnormalities during gait, to monitor change in foot/ankle motion over time, and to measure the outcome of intervention. With the creation of a new outcome measure, it is important to test its responsiveness in a clinical population for whom it may be sensitive to change. AIM: To evaluate the responsiveness of the FPS in a clinical population following isolated foot and ankle surgery. METHODS: Using previous work completed to validate the FPS, we defined the minimal clinically important difference (MCID) for the FPS. Using this MCID, we applied it to a clinical population of 37 children with cerebral palsy, spastic hemiplegia, comparing their FPS before and after foot and ankle surgery. A regression analysis looked at potential relationships between the change in FPS and their pre-operative FPS, age at surgery, and time since surgery. RESULTS: An MCID of 2.4 degrees was calculated through regression analysis. The mean change from the pre-operative FPS to the post-operative FPS was 4.6 (SD 3.7 with a range from -0.1 to 13.4). Twenty-eight children (76%) had a change in their FPS greater than the MCID. A regression analyses only showed a clear regression between pre-operative FPS and change in FPS (R2 = 0.58 p < 0.01).


Assuntos
Paralisia Cerebral , Hemiplegia , Fenômenos Biomecânicos , Paralisia Cerebral/complicações , Paralisia Cerebral/cirurgia , Criança , Marcha , Humanos , Extremidade Inferior
8.
Cyborg Bionic Syst ; 2022: 9842169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285305

RESUMO

Tendon disease is a significant and growing burden to healthcare systems. One strategy to address this challenge is tissue engineering. A widely held view in this field is that mechanical stimulation provided to constructs should replicate the mechanical environment of native tissue as closely as possible. We review recent tendon tissue engineering studies in this article and highlight limitations of conventional uniaxial tensile bioreactors used in current literature. Advanced robotic platforms such as musculoskeletal humanoid robots and soft robotic actuators are promising technologies which may help address translational gaps in tendon tissue engineering. We suggest the proposed benefits of these technologies and identify recent studies which have worked to implement these technologies in tissue engineering. Lastly, key challenges to address in adapting these robotic technologies and proposed future research directions for tendon tissue engineering are discussed.

9.
Digit Health ; 8: 20552076221141215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518353

RESUMO

Introduction: Accurate acetabular cup and femoral stem component orientation are critical for optimising patient outcomes, reducing complications and increasing component longevity following total hip replacement (THR). This study aimed to determine the accuracy of a novel virtual reality (VR) platform in assessing component orientation in a simulated THR model. Methods: The VR platform (HTC Vive Pro® system hardware) was compared against the validated Vicon® optical motion capture (MoCap) system. An acetabular cup and femoral stem were manually implanted across a range of orientations into pelvic and femur sawbones, respectively. Simultaneous readings of the acetabular cup operative anteversion (OA) and inclination (OI) and femoral stem alignment (FSA) and neck anteversion (FNA) were obtained from the VR and MoCap systems. Statistical analysis was performed using Pearson product-moment correlation coefficient (PPMCC) (Pearson's r) and linear regression (R2). Results: A total of 55 readings were obtained for the acetabular cup and 68 for the femoral stem model. The mean average differences in OA, OI, FSA and FNA between the systems were 3.44°, -0.01°, 0.01° and -0.04°, respectively. Strong positive correlations were demonstrated between both systems in OA, OI, FSA and FNA, with Pearson's r = 0.92, 0.94, 0.99 and 0.99, and adjusted R2 = 0.82, 0.9, 0.98 and 0.98, respectively. Conclusion: The novel VR platform is highly accurate and reliable in determining both acetabular cup and femoral stem component orientations in simulated THR models. This adaptable and cost-effective digital tracking platform may be modified for use in a range of simulated surgical training and educational purposes, particularly in orthopaedic surgery.

10.
Bone Joint J ; 103-B(1): 192-197, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33380192

RESUMO

AIMS: To compare changes in gait kinematics and walking speed 24 months after conventional (C-MLS) and minimally invasive (MI-MLS) multilevel surgery for children with diplegic cerebral palsy (CP). METHODS: A retrospective analysis of 19 children following C-MLS, with mean age at surgery of 12 years five months (seven years ten months to 15 years 11 months), and 36 children following MI-MLS, with mean age at surgery of ten years seven months (seven years one month to 14 years ten months), was performed. The Gait Profile Score (GPS) and walking speed were collected preoperatively and six, 12 and 24 months postoperatively. Type and frequency of procedures as part of MLS, surgical adverse events, and subsequent surgery were recorded. RESULTS: In both groups, GPS improved from the preoperative gait analysis to the six-month assessment with maintenance at 12 and 24 months postoperatively. While reduced at six months in both groups, walking speed returned to preoperative speed by 12 months. The overall pattern of change in GPS and walking speed was similar over time following C-MLS and MI-MLS. There was a median of ten procedures per child as part of both C-MLS (interquartile range (IQR) 8.0 to 11.0) and MI-MLS (IQR 7.8 to 11.0). Surgical adverse events occurred in seven (37%) and 13 (36%) children, with four (21%) and 13 (36%) patients requiring subsequent surgery following C-MLS and MI-MLS, respectively. CONCLUSION: This study indicates similar improvements in gait kinematics and walking speed 24 months after C-MLS and MI-MLS for children with diplegic CP. Cite this article: Bone Joint J 2021;103-B(1):192-197.


Assuntos
Paralisia Cerebral/cirurgia , Transtornos Neurológicos da Marcha/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos , Adolescente , Fenômenos Biomecânicos , Criança , Feminino , Análise da Marcha , Humanos , Masculino , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Velocidade de Caminhada
11.
J Biomech ; 125: 110581, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34217032

RESUMO

The foot is anatomically and functionally complex, and thus an accurate description of intrinsic kinematics for clinical or sports applications requires multiple segments. This has led to the development of many multi-segment foot models for both kinematic and kinetic analyses. These models differ in the number of segments analyzed, bony landmarks identified, required marker set, defined anatomical axes and frames, the convention used to calculate joint rotations and the determination of neutral positions or other offsets from neutral. Many of these models lack validation. The terminology used is inconsistent and frequently confusing. Biomechanical and clinical studies using these models should use established references and describe how results are obtained and reported. The International Society of Biomechanics has previously published proposals for standards regarding kinematic and kinetic measurements in biomechanical research, and in this paper also addresses multi-segment foot kinematics modeling. The scope of this work is not to prescribe a particular set of standard definitions to be used in all applications, but rather to recommend a set of standards for collecting, calculating and reporting relevant data. The present paper includes recommendations for the overall modeling and grouping of the foot bones, for defining landmarks and other anatomical references, for addressing the many experimental issues in motion data collection, for analysing and reporting relevant results and finally for designing clinical and biomechanical studies in large populations by selecting the most suitable protocol for the specific application. These recommendations should also be applied when writing manuscripts and abstracts.


Assuntos
, Marcha , Fenômenos Biomecânicos , Articulações do Pé , Pele
12.
Gait Posture ; 85: 84-87, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33517041

RESUMO

INTRODUCTION: In three-dimensional gait analysis, anatomical axes are defined by and therefore sensitive to marker placement. Previous analysis of the Oxford Foot Model (OFM) has suggested that the axes of the hindfoot are most sensitive to marker placement on the posterior aspect of the heel. Since other multi-segment foot models also use a similar marker, it is important to find methods to place this as accurately as possible. The aim of this pilot study was to test two different 'jigs' (anatomical alignment devices) against eyeball marker placement to improve reliability of heel marker placement and calculation of hindfoot angles using the OFM. METHODS: Two jigs were designed using three-dimensional printing: a ratio caliper and heel mould. OFM kinematics were collected for ten healthy adults; intra-tester and inter-tester repeatability of hindfoot marker placement were assessed using both an experienced and inexperienced gait analyst for 5 clinically relevant variables. RESULTS: For 3 out of 5 variables the intra-tester and inter-tester variability was below 2 degrees for all methods of marker placement. The ratio caliper had the lowest intra-tester variability for the experienced gait analyst in all 5 variables and for the inexperienced gait analyst in 4 out of 5 variables. However for inter-tester variability, the ratio caliper was only lower than the eyeball method in 2 out of the 5 variables. The mould produced the worst results for 3 of the 5 variables, and was particularly prone to variability when assessing average hindfoot rotation, making it the least reliable method overall. CONCLUSIONS: The use of the ratio caliper may improve intra-tester variability, but does not seem superior to the eyeball method of marker placement for inter-tester variability. The use of a heel mould is discouraged.


Assuntos
Pontos de Referência Anatômicos , Análise da Marcha/instrumentação , Análise da Marcha/métodos , Calcanhar/anatomia & histologia , Modelos Anatômicos , Impressão Tridimensional , Adulto , Fenômenos Biomecânicos , Feminino , Pé/anatomia & histologia , Pé/fisiologia , Voluntários Saudáveis , Calcanhar/fisiologia , Humanos , Masculino , Variações Dependentes do Observador , Projetos Piloto , Reprodutibilidade dos Testes , Rotação
13.
J Child Orthop ; 14(2): 139-144, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32351627

RESUMO

PURPOSE: To report functional mobility in patients with diplegic cerebral palsy (CP) at long-term follow-up after single-event multilevel surgery (SEMLS). The secondary aim was to assess the relationship between functional mobility and quality of life (QoL) in patients previously treated with SEMLS. METHODS: A total of 61 patients with diplegic CP, mean age at surgery 11 years, eight months (sd 2 years, 5 months), were included. A mean of eight years (sd 3 years, 10 months) after SEMLS, patients were contacted and asked to complete the Functional Mobility Scale (FMS) questionnaire over the telephone and given a weblink to complete an online version of the CP QOL Teen. FMS was recorded for all patients and CP QOL Teen for 23 patients (38%). RESULTS: Of patients graded Gross Motor Function Classification System (GMFCS) I and II preoperatively, at long-term follow-up the proportion walking independently at home, school/work and in the community was 71% (20/28), 57% (16/28) and 57% (16/28), respectively. Of patients graded GMFCS III preoperatively, at long-term follow-up 82% (27/33) and 76% (25/33) were walking either independently or with an assistive device at home and school/work, respectively, while over community distances 61% (20/33) required a wheelchair. The only significant association between QoL and functional mobility was better 'feelings about function' in patients with better home FMS scores (r = 0.55; 95% confidence interval 0.15 to 0.79; p = 0.01). CONCLUSION: The majority of children maintained their preoperative level of functional mobility at long-term follow-up after SEMLS. LEVEL OF EVIDENCE: IV.

14.
Bone Jt Open ; 1(7): 384-391, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33215128

RESUMO

AIMS: To assess if older symptomatic children with club foot deformity differ in perceived disability and foot function during gait, depending on initial treatment with Ponseti or surgery, compared to a control group. Second aim was to investigate correlations between foot function during gait and perceived disability in this population. METHODS: In all, 73 children with idiopathic club foot were included: 31 children treated with the Ponseti method (mean age 8.3 years; 24 male; 20 bilaterally affected, 13 left and 18 right sides analyzed), and 42 treated with primary surgical correction (mean age 11.6 years; 28 male; 23 bilaterally affected, 18 left and 24 right sides analyzed). Foot function data was collected during walking gait and included Oxford Foot Model kinematics (Foot Profile Score and the range of movement and average position of each part of the foot) and plantar pressure (peak pressure in five areas of the foot). Oxford Ankle Foot Questionnaire, Disease Specific Index for club foot, Paediatric Quality of Life Inventory 4.0 were also collected. The gait data were compared between the two club foot groups and compared to control data. The gait data were also correlated with the data extracted from the questionnaires. RESULTS: Our findings suggest that symptomatic children with club foot deformity present with similar degrees of gait deviations and perceived disability regardless of whether they had previously been treated with the Ponseti Method or surgery. The presence of sagittal and coronal plane hindfoot deformity and coronal plane forefoot deformity were associated with higher levels of perceived disability, regardless of their initial treatment. CONCLUSION: This is the first paper to compare outcomes between Ponseti and surgery in a symptomatic older club foot population seeking further treatment. It is also the first paper to correlate foot function during gait and perceived disability to establish a link between deformity and subjective outcomesCite this article: Bone Joint Open 2020;1-7:384-391.

15.
Gait Posture ; 77: 14-19, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951914

RESUMO

BACKGROUND: Estimating muscle-tendon complex (MTC) lengths is important for planning of soft tissue surgery and evaluating outcomes, e.g. in children with cerebral palsy (CP). Conventional musculoskeletal models often represent the foot as one rigid segment, called a mono-segment foot model (mono-SFM). However, a multi-segment foot model (multi-SFM) might provide better estimates of triceps surae MTC lengths, especially in patients with foot deformities. RESEARCH QUESTION: What is the effect of a mono- versus a multi-SFM on simulated ankle angles and triceps surae MTC lengths during gait in typically developing subjects and in children with CP with equinus, cavovarus or planovalgus foot deformities? METHODS: 50 subjects were included, 10 non-affected adults, 10 typically developing children, and 30 children with spastic CP and foot deformities. During walking trials, marker trajectories were collected for two marker models, including a mono- and multi-segment foot; respectively Newington gait model and Oxford foot model. Two musculoskeletal lower body models were constructed in OpenSim with either a mono- or multi-SFM based on the corresponding marker models. Normalized triceps surae MTC lengths (soleus, gastrocnemius medialis and lateralis) and ankle angles were calculated and compared between models using statistical parametric mapping RM-ANOVAs. Root mean square error values between simulated MTC lengths were compared using Wilcoxon signed-rank and rank-sum tests. RESULTS: Mono-SFM simulated significantly more ankle dorsiflexion (7.5 ± 1.2°) and longer triceps surae lengths (difference; soleus:2.6 ± 0.29 %, gastrocnemius medialis:1.7 ± 0.2 %, gastrocnemius lateralis:1.8 ± 0.2%) than a multi-SFM. Differences between models were larger in children with CP compared to typically developing children and larger in the stance compared to the swing phase of gait. Largest differences were found in children with CP presenting with planovalgus (4.8 %) or cavovarus (3.8 %) foot deformities. SIGNIFICANCE: It is advisable to use a multi-SFM in musculoskeletal models when simulating triceps surae MTC lengths, especially in individuals with planovalgus or cavovarus foot deformities.


Assuntos
Articulação do Tornozelo/fisiopatologia , Paralisia Cerebral/fisiopatologia , Ossos do Pé/fisiopatologia , Deformidades Congênitas do Pé/fisiopatologia , Pé/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Marcha/fisiologia , Músculo Esquelético/fisiopatologia , Tendões/fisiopatologia , Adulto , Fenômenos Biomecânicos , Criança , Feminino , Transtornos Neurológicos da Marcha/diagnóstico , Humanos , Masculino , Modelos Anatômicos , Amplitude de Movimento Articular/fisiologia , Caminhada/fisiologia
16.
Gait Posture ; 82: 126-132, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32920448

RESUMO

BACKGROUND: The Oxford Foot Model (OFM) and Rizzoli Foot Model (RFM) are the two most frequently used multi-segment models to measure foot kinematics. However, a comprehensive comparison of the kinematic output of these models is lacking. RESEARCH QUESTION: What are the differences in kinematic output between OFM and RFM during normal gait and typical pathological gait patterns in healthy adults?. METHODS: A combined OFM and RFM marker set was placed on the right foot of ten healthy subjects. A static standing trial and six level walking trials were collected for normal gait and for four voluntarily adopted gait types: equinus, crouch, toe-in and toe-out. Joint angles were calculated for every trial for the hindfoot relative to shank (HF-SH), forefoot relative to hindfoot (FF-HF) and hallux relative to forefoot (HX-FF). Average static joint angles of both models were compared between models. After subtracting these offsets, the remaining dynamic angles were compared using statistical parametric mapping repeated measures ANOVAs and t-tests. Furthermore, range of motion was compared between models for every angle. RESULTS: For the static posture, RFM compared to OFM measured more plantar flexion (Δ = 6°) and internal rotation (Δ = 7°) for HF-SH, more plantar flexion (Δ = 34°) and inversion (Δ = 13°) for FF-HF and more dorsal flexion (Δ = 37°) and abduction (Δ = 12°) for HX-FF. During normal walking, kinematic differences were found in various parts of the gait cycle. Moreover, range of motion was larger in the HF-SH for OFM and in FF-HF and HX-FF for RFM. The differences between models were not the same for all gait types. Equinus and toe-out gait demonstrated most pronounced differences. SIGNIFICANCE: Differences are present in kinematic output between OFM and RFM, which also depend on gait type. Therefore, kinematic output of foot and ankle studies should be interpreted with careful consideration of the multi-segment foot model used.


Assuntos
Fenômenos Biomecânicos/fisiologia , Pé/fisiopatologia , Marcha/fisiologia , Adulto , Feminino , Transtornos Neurológicos da Marcha , Humanos , Masculino
17.
Gait Posture ; 29(1): 71-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18676146

RESUMO

This study developed an objective graphical classification method of spastic diplegic cerebral palsy (CP) gait patterns based on principal component analysis (PCA). Gait analyses of 20 healthy and 20 spastic diplegic CP children were examined to define gait characteristics. PCA was used to reduce the dimensionality of 27 parameters (26 selected kinematics variables and age of the children) for the 40 subjects in order to identify the dominant variability in the data. Fuzzy C-mean cluster analysis was performed plotting the first three principal components, which accounted for 61% of the total variability. Results indicated that only the healthy children formed a distinct cluster; however it was possible to recognise gait patterns in overlapping clusters in children with spastic diplegia. This study demonstrates that it is possible to quantitatively classify gait types in CP using PCA. Graphical classification of gait types could assist in clinical evaluation of the children and serve as a validation of clinical reports as well as aid treatment planning.


Assuntos
Paralisia Cerebral/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Adolescente , Criança , Análise por Conglomerados , Estudos de Viabilidade , Feminino , Transtornos Neurológicos da Marcha/classificação , Humanos , Masculino , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
18.
J Pediatr Orthop ; 29(1): 73-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19098651

RESUMO

BACKGROUND: Children with spastic diplegic cerebral palsy (CP) exhibit abnormal walking patterns and frequently develop lower limb, long bone deformities. It is important to determine if any relationship exists between bone morphology and movement of the lower limbs in children with CP. This is necessary to explain and possibly prevent the development of these deformities. METHODS: This study investigated the relationship between bone morphology and gait characteristics in 10 healthy children (age range, 6-13 years; mean, 8 years 7 months; SD, +/-2 years 7 months) and 9 children with spastic diplegic CP (age range, 6-12 years; mean, 9 years 2.5 months; SD, +/-1 year 10.5 months) with no previous surgery. Three-dimensional magnetic resonance images were analyzed to define bone morphology. Morphological characteristics, such as the bicondylar angle, neck-shaft angle, anteversion angle, and tibial torsion, were measured. Gait analyses were performed to obtain kinematic characteristics of CP and normal children's gait. Principal component analysis was used to reduce the dimensionality of 27 parameters (26 kinematics variables and age of the children) to 8 independent variables. Correlations between gait and bone morphology were determined for both groups of children. RESULTS: Results indicated that in healthy children, hip adduction was correlated with neck-shaft and bicondylar angles. In CP children, pelvic obliquity correlated with neck-shaft angle, and foot rotation with bicondylar angle. In the transverse plane, hip and pelvic rotational kinematics were related to femoral anteversion in healthy children and to tibial torsion in CP children. CONCLUSION: Different development was observed in femoral and tibial morphology between CP and healthy children. The relationship between bone shape and dynamic gait patterns also varied between these populations. This needs to be taken into account, particularly when surgical treatment is planned. CLINICAL RELEVANCE: Understanding the relationship between gait abnormality and bone deformity could eventually help in developing treatment regimens that will address gait deviations at the correct level and promote normal bone growth in children with CP.


Assuntos
Paralisia Cerebral/fisiopatologia , Marcha , Imageamento por Ressonância Magnética/métodos , Adolescente , Fenômenos Biomecânicos , Criança , Fêmur/anormalidades , Articulação do Quadril/fisiopatologia , Humanos , Análise de Componente Principal , Estudos Prospectivos , Tíbia/anormalidades , Anormalidade Torcional/fisiopatologia
19.
J Biomech ; 84: 284-289, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30665709

RESUMO

Multi-segment foot models (MSFM) are used in gait analysis for the diagnosis and planning of treatment for patients with foot deformities. Like other biomechanical models, MSFMs represent the leg and foot as a series of linked rigid segments, but such a simplification may not be appropriate, particularly for the flexible forefoot. This study investigated the appropriateness of the rigid body assumption on marker clusters used to define the individual segments (tibia, hindfoot, forefoot) of a widely-used MSFM. Rigidity of the marker clusters was quantified using the rigid body error (σRBE) calculated for each frame of a representative gait cycle for 64 normal healthy adults who underwent gait analysis. σRBE is a measure of how well the tracking marker configuration at each frame compares to the arrangement of the same markers in a reference pose. As expected, the patterns of deformation of the three marker clusters differed over the gait cycle. The hindfoot cluster remained relatively undeformed in comparison to the forefoot and tibia clusters. The largest deformations of the forefoot cluster occurred near the beginning and end of the stance phase. The tibia cluster deformed throughout the entire gait cycle, with a pattern similar to that of a typical knee flexion angle graph. The results raise questions about the appropriateness of the rigid-body assumption when applied to MSFMs, particularly in the forefoot region.


Assuntos
Pé/fisiologia , Análise da Marcha , Fenômenos Mecânicos , Modelos Biológicos , Adulto , Fenômenos Biomecânicos , Feminino , Pé/anatomia & histologia , Humanos , Masculino
20.
Gait Posture ; 69: 50-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30665039

RESUMO

BACKGROUND: Many multi-segment foot models based on skin-markers have been proposed for in-vivo kinematic analysis of foot joints. It remains unclear whether these models have developed far enough to be useful in clinical populations. The present paper aims at reviewing these models, by discussing major methodological issues, and analyzing relevant clinical applications. RESEARCH QUESTION: Can multi-segment foot models be used in clinical populations? METHODS: Pubmed and Google Scholar were used as the main search engines to perform an extensive literature search of papers reporting definition, validation or application studies of multi-segment foot models. The search keywords were the following: 'multisegment'; 'foot'; 'model'; 'kinematics', 'joints' and 'gait'. RESULTS: More than 100 papers published between 1991 and 2018 were identified and included in the review. These studies either described a technique or reported a clinical application of one of nearly 40 models which differed according to the number of segments, bony landmarks, marker set, definition of anatomical frames, and convention for calculation of joint rotations. Only a few of these models have undergone robust validation studies. Clinical application papers divided by type of assessment revealed that the large majority of studies were a cross-sectional comparison of a pathological group to a control population. SIGNIFICANCE: This review suggests that there is sufficient evidence that multi-segment foot models may be successfully applied in clinical populations. Analysis of the currently available models allows users to better identify the most suitable protocol for specific clinical applications. However new models require thorough validation and assessment before being used to support clinical decisions.


Assuntos
Articulações do Pé/anatomia & histologia , Pé/anatomia & histologia , Marcha/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Estudos Transversais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA