Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Cell Biol ; 188(4): 527-36, 2010 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-20156967

RESUMO

Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A-binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Fagossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Autofagia/genética , Proteínas de Transporte/química , Membrana Celular/metabolismo , Genes Fúngicos/genética , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Fusão de Membrana , Modelos Biológicos , Dados de Sequência Molecular , Corpos Multivesiculares/metabolismo , Peptídeos/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Via Secretória , Vacúolos/metabolismo
3.
J Cell Biol ; 190(3): 407-25, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20696708

RESUMO

Reversible phosphoinositide phosphorylation provides a dynamic membrane code that balances opposing cell functions. However, in vivo regulatory relationships between specific kinases, phosphatases, and phosphoinositide subpools are not clear. We identified myotubularin (mtm), a Drosophila melanogaster MTM1/MTMR2 phosphoinositide phosphatase, as necessary and sufficient for immune cell protrusion formation and recruitment to wounds. Mtm-mediated turnover of endosomal phosphatidylinositol 3-phosphate (PI(3)P) pools generated by both class II and III phosphatidylinositol 3-kinases (Pi3K68D and Vps34, respectively) is needed to down-regulate membrane influx, promote efflux, and maintain endolysosomal homeostasis. Endocytosis, but not endolysosomal size, contributes to cortical remodeling by mtm function. We propose that Mtm-dependent regulation of an endosomal PI(3)P pool has separable consequences for endolysosomal homeostasis and cortical remodeling. Pi3K68D depletion (but not Vps34) rescues protrusion and distribution defects in mtm-deficient immune cells and restores functions in other tissues essential for viability. The broad interactions between mtm and class II Pi3K68D suggest a novel strategy for rebalancing PI(3)P-mediated cell functions in MTM-related human disease.


Assuntos
Córtex Cerebral/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Drosophila , Homeostase
4.
J Cell Biol ; 183(6): 1061-74, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19075114

RESUMO

The phosphoinositide phosphatidylinositol 4-phosphate (PtdIns4P) is an essential signaling lipid that regulates secretion and polarization of the actin cytoskeleton. In Saccharomyces cerevisiae, the PtdIns 4-kinase Stt4 catalyzes the synthesis of PtdIns4P at the plasma membrane (PM). In this paper, we identify and characterize two novel regulatory components of the Stt4 kinase complex, Ypp1 and Efr3. The essential gene YPP1 encodes a conserved protein that colocalizes with Stt4 at cortical punctate structures and regulates the stability of this lipid kinase. Accordingly, Ypp1 interacts with distinct regions on Stt4 that are necessary for the assembly and recruitment of multiple copies of the kinase into phosphoinositide kinase (PIK) patches. We identify the membrane protein Efr3 as an additional component of Stt4 PIK patches. Efr3 is essential for assembly of both Ypp1 and Stt4 at PIK patches. We conclude that Ypp1 and Efr3 are required for the formation and architecture of Stt4 PIK patches and ultimately PM-based PtdIns4P signaling.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Fracionamento Celular , Deleção de Genes , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA