Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Paediatr Anaesth ; 34(5): 415-421, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38055634

RESUMO

INTRODUCTION: Bivalirudin is recommended as an alternative to heparin in cardiac surgery with cardiopulmonary bypass. Although it has been used in infants and children for this indication, there is a paucity of data on the pharmacologic effects of bivalirudin in neonates. Given the immaturity of the hemostatic system in neonates, we hypothesized that coagulation responses to bivalirudin in this population would be different than in adults. METHODS: Blood samples were drawn from placenta-cord units and from healthy adult donors. The study was carried out in two steps. First, bivalirudin was added to cord and adult blood samples at concentrations of 0, 5, 10, 15, and 20 µg/mL. Activated clotting time and thromboelastographic variables were recorded. Next, we used a Chandler loop system to assess the efficacy of bivalirudin in a simple model of cardiopulmonary bypass. The loops were primed with cord or adult blood and were run until thrombus was detected. Plasma bivalirudin concentrations were measured at 1, 15, 30, 45, 60, and 75 min after initiating rotation of the loops using liquid chromatography/mass spectrometry. RESULTS: Bivalirudin elicited a dose-dependent prolongation inhibition of coagulation in both cord and adult blood samples with greater potency in cord blood in comparison to adult blood (activated clotting time: 627 ± 50 vs. 452 ± 22 s at 15 µg/mL bivalirudin, p < .0001). This relative potency was also demonstrated in the Chandler loop system, but interestingly, cord blood appeared to inactivate bivalirudin more rapidly than adult blood with earlier clotting in loops containing cord blood. CONCLUSIONS: This study demonstrates that bivalirudin has greater potency in cord blood in vitro than in adult blood. Plasma degradation appears to proceed more rapidly in cord blood than in adults. Both of these findings should be considered when planning dosing regimens in neonatal patients.


Assuntos
Anticoagulantes , Heparina , Lactente , Criança , Recém-Nascido , Adulto , Humanos , Heparina/farmacologia , Hirudinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
2.
Perfusion ; : 2676591231226291, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38171494

RESUMO

BACKGROUND: The effect of the anticoagulant, dabigatran, and its antagonist, idarucizumab, on coagulation remains poorly quantified. There are few pharmacokinetic-pharmacodynamic data available to determine dabigatran dose in humans or animals undergoing cardiopulmonary bypass. METHODS: Five sheep were given intravenous dabigatran 4 mg/kg. Blood samples were collected for thromboelastometric reaction time (R-time) and drug assay at 5, 15, 30, 60, 120, 240, 480 min, and 24 h. Plasma dabigatran concentrations and R-times were analyzed using an integrated pharmacokinetic-pharmacodynamic model using non-linear mixed effects. The impact of idarucizumab 15 mg/kg administered 120 min after dabigatran 4 mg/kg and its effect on R-time was observed. RESULTS: A 2-compartment model described dabigatran pharmacokinetics with a clearance (CL 0.0453 L/min/70 kg), intercompartment clearance (Q 0.268 L/min/70 kg), central volume of distribution (V1 2.94 L/70 kg), peripheral volume of distribution (V2 9.51 L/70 kg). The effect compartment model estimates for a sigmoid EMAX model using Reaction time had an effect site concentration (Ce50 64.2 mg/L) eliciting half of the maximal effect (EMAX 180 min). The plasma-effect compartment equilibration half time (T1/2keo) was 1.04 min. Idarucizumab 15 mg/kg reduced R-time by approximately 5 min. CONCLUSIONS: Dabigatran reversibly binds to the active site on the thrombin molecule, preventing activation of coagulation factors. The pharmacologic target concentration strategy uses pharmacokinetic-pharmacodynamic information to inform dose. A loading dose of dabigatran 0.25 mg/kg followed by a maintenance infusion of dabigatran 0.0175 mg/kg/min for 30 min and a subsequent infusion dabigatran 0.0075 mg/kg/min achieves a steady state target concentration of 5 mg/L in a sheep model.

3.
Anesthesiology ; 138(5): 523-532, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821759

RESUMO

BACKGROUND: Heparin anticoagulation has been used successfully for cardiopulmonary bypass (CPB). However, an alternative anticoagulant approach is desirable due to the cases of heparin-induced thrombocytopenia. Dabigatran provides anticoagulation for an in vitro model of simulated CPB. The current analysis tests the hypothesis that dabigatran provides sufficient anticoagulation for CPB in intact rabbits. METHODS: Nonlinear mixed effects models were used to estimate dabigatran parameters for a two-compartment pharmacokinetic model in 10 New Zealand White rabbits. A dabigatran infusion designed to maintain a plasma concentration of 90 µg/ml was run throughout CPB based on the pharmacokinetics. Animals were subjected to sternotomy and anticoagulated with IV dabigatran (six animals) or heparin (four animals). Rabbits were cannulated centrally using the right atrium and ascending aorta and CPB was maintained for 120 min. Measurement of activated clotting time, thromboelastometric reaction time, and blood gases were performed during CPB. Then, the animals were euthanized, and the brain and one kidney were removed for histology. Sections of the arterial filters were inspected using electron microscopy. RESULTS: The observed dabigatran concentrations during CPB were greater than the target concentration, ranging from 137 ± 40 µg/ml at 5 min of CPB to 428 ± 150 µg/ml at 60 min, and 295 ± 35 µg/ml at 120 min. All rabbits completed 2 h of CPB without visible thrombosis. In the two groups, reaction time values were elevated, reaching 10,262 ± 4,198 s (dabigatran group) and 354 ± 141 s (heparin group) at 120 min of CPB. Brains and kidneys showed no evidence of thrombosis or ultrastructural damage. Sections of the arterial line filter showed minimal or no fibrin. There was no significant difference in outcomes between dabigatran- and heparin-treated animals. CONCLUSIONS: In this first-use, proof-of-concept study, the authors have shown that dabigatran provides acceptable anticoagulation similar to heparin to prevent thrombosis using a rabbit CPB model.


Assuntos
Dabigatrana , Trombose , Coelhos , Animais , Ponte Cardiopulmonar , Heparina , Anticoagulantes
4.
Anesth Analg ; 135(1): 52-59, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389372

RESUMO

BACKGROUND: Heparin is the standard anticoagulant for cardiopulmonary bypass (CPB); however, there are problems with its use that make the development of suitable alternatives desirable. Currently, no ideal alternative exists. We have previously reported that the direct thrombin inhibitor dabigatran can prevent coagulation in simulated CPB at high concentrations. These high concentrations may cause difficulties in achieving the reversal of dabigatran with idarucizumab, given the markedly different pharmacokinetics of the 2 drugs. Herein, we test the hypothesis that the addition of the anti-Xa drug rivaroxaban would provide suitable anticoagulation at a lower concentration of dabigatran given likely synergy between the 2 classes of drugs. The primary goal of the study was to investigate whether the addition of rivaroxaban reduces the concentration of dabigatran necessary to allow 2 hours of simulated CPB. METHODS: The study was performed in sequential steps. Blood collected from consenting healthy donors was used throughout. First, we added graded concentrations of dabigatran and rivaroxaban alone and in combination and assessed inhibition of anticoagulation using thromboelastometry. Using results from this step, combinations of dabigatran and rivaroxaban were tested in both Chandler loop and simulated CPB circuits. Dabigatran and rivaroxaban were added before recalcification, and the circuits were run for 120 minutes. In both models of CPB, 120 minutes of circulation without visible thrombus was considered successful. In the Chandler loop system, idarucizumab was added to reverse anticoagulant effects. In the CPB circuits, the arterial line filters were examined using scanning electron microscope (SEM) to qualitatively assess for fibrin deposition. RESULTS: In vitro analysis of blood samples treated with dabigatran and rivaroxaban showed that dabigatran and rivaroxaban individually prolonged clotting time (CT) in a dose-dependent manner. However, when combined, the drugs behaved synergistically. In the Chandler loop system, dabigatran 2400 and 4800 ng/mL plus rivaroxaban (150 ng/mL) effectively prevented clot formation and reduced the dynamics of clot propagation for 120 minutes. Idarucizumab (250-1000 µg/mL) effectively reversed anticoagulation. In the CPB circuits, dabigatran (2500 ng/mL) and rivaroxaban (200 ng/mL) were successful in allowing 120 minutes of simulated CPB and prevented fibrin deposition. Biomarkers of coagulation activation did not increase during simulated CPB. Heparin controls performed similarly to dabigatran and rivaroxaban. CONCLUSIONS: The dual administration of oral anticoagulant drugs (dabigatran and Rivaroxaban) with different pharmacologic mechanisms of action produced synergistic inhibition of coagulation in vitro and successfully prevented clotting during simulated CPB.


Assuntos
Dabigatrana , Trombose , Anticoagulantes/uso terapêutico , Ponte Cardiopulmonar/efeitos adversos , Fibrina , Heparina/efeitos adversos , Humanos , Rivaroxabana , Trombose/tratamento farmacológico
5.
Paediatr Anaesth ; 32(10): 1113-1120, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35735989

RESUMO

INTRODUCTION: Dabigatran is an anticoagulant with potential use during cardiopulmonary bypass in children and adults. The pharmacokinetic-pharmacodynamic relationship for dabigatran anticoagulation effect was investigated in an intact animal model using rabbits. METHODS: Ten male New Zealand white rabbits were given a novel preparation of intravenous dabigatran 15 mg.kg-1 . Blood samples were collected for activated clotting time, thromboelastometric reaction time, and drug assay at 5, 15, 30, 60, 120, 180, 300, and 420 min. Plasma dabigatran concentrations and coagulation measures were analyzed using an integrated pharmacokinetic-pharmacodynamic model using nonlinear mixed effects. Effects (activated clotting and thromboelastometric reaction times) were described using a sigmoidal EMAX model. Pharmacokinetic parameters were scaled using allometry and standardized to a 70 kg size standard. Pharmacodynamics were investigated using both an effect compartment model and an indirect response (turnover) model. RESULTS: A two-compartment model described dabigatran pharmacokinetics with a clearance (CL 0.135 L.min-1 .70 kg-1 ), intercompartment clearance (Q 0.33 L.min-1 .70 kg-1 ), central volume of distribution (V1 12.3 L.70 kg-1 ), and peripheral volume of distribution (V2 30.1 L.70 kg-1 ). The effect compartment model estimates for a sigmoid EMAX model with activated clotting time had an effect site concentration (Ce50 20.1 mg.L-1 ) eliciting half of the maximal effect (EMAX 899 s) and a Hill coefficient (N 0.66). The equilibration half time (T1/2 keo) was 1.4 min. Results for the reaction time were plasma concentration (Cp50 65.3 mg.L-1 ), EMAX 34 min, N 0.80 with a baseline thromboelastometric reaction time of 0.4 min. The equilibration half time (T1/2 keo) was 2.04 min. CONCLUSIONS: Dabigatran reversibly binds to the active site on the thrombin molecule, preventing thrombin-mediated activation of coagulation factors. The effect compartment model performed slightly better than the turnover model and was able to adequately capture pharmacodynamics for both activated clotting and thromboelastometric reaction times. The equilibration half time was short (<2 min). These data can be used to inform future animal preclinical studies for those undergoing cardiopulmonary bypass. These preclinical data also demonstrate the magnitude of parameter values for a delayed effect compartment model that are applicable to humans.


Assuntos
Dabigatrana , Trombina , Adulto , Animais , Anticoagulantes , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Criança , Dabigatrana/farmacologia , Humanos , Masculino , Coelhos , Trombina/farmacologia
6.
Anesth Analg ; 132(2): 566-574, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32833714

RESUMO

BACKGROUND: Currently no ideal alternative exists for heparin for cardiopulmonary bypass (CPB). Dabigatran is a direct thrombin inhibitor for which a reversal agent exists. The primary end point of the study was to explore whether Dabigatran was an effective anticoagulant for 120 minutes of simulated CPB. METHODS: The study was designed in 2 sequential steps. Throughout, human blood from healthy donors was used for each experimental step. Initially, increasing concentrations of Dabigatran were added to aliquots of fresh whole blood, and the anticoagulant effect measured using kaolin/tissue factor-activated thromboelastography (rapidTEG). The dynamics of all thromboelastography (TEG) measurements were studied with repeated measures analysis of variance (ANOVA). Based on these data, aliquots of blood were treated with high-concentration Dabigatran and placed in a Chandler loop as a simple ex vivo bypass model to assess whether Dabigatran had sufficient anticoagulant effects to maintain blood fluidity for 2 hours of continuous contact with the artificial surface of the PVC tubing. Idarucizumab, humanized monoclonal antibody fragment, was used to verify the reversibility of Dabigatran effects. Finally, 3 doses of Dabigatran were tested in a simulated CPB setup using a heart-lung machine and a commercially available bypass circuit with an arteriovenous (A-V) loop. The primary outcome was the successful completion of 120 minutes of simulated CPB with dabigatran anticoagulation, defined as lack of visible thrombus. Thromboelastographic reaction (R) time was measured repeatedly in each bypass simulation, and the circuits were continuously observed for clot. Scanning Electron Microscopy (SEM) was used to visualize fibrin formation in the filters meshes during CPB. RESULTS: In in vitro blood samples, Dabigatran prolonged R time and reduced the dynamics of clot propagation (as measured by speed of clot formation [Angle], maximum rate of thrombus generation [MRTG], and time to maximum rate of thrombus generation [TMRTG]) in a dose-dependent manner. In the Chandler Loop, high doses of Dabigatran prevented clot formation for 120 minutes, but only at doses higher than expected. Idarucizumab decreased R time and reversed anticoagulation in both in vitro and Chandler Loops settings. In the A-V loop bypass simulation, Dabigatran prevented gross thrombus generation for 120 minutes of simulated CPB. CONCLUSIONS: Using sequential experimental approaches, we showed that direct thrombin inhibitor Dabigatran in high doses maintained anticoagulation of blood for simulated CPB. Idarucizumab reduced time for clot formation reversing the anticoagulation action of Dabigatran.


Assuntos
Antitrombinas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Ponte Cardiopulmonar/efeitos adversos , Dabigatrana/farmacologia , Trombose/prevenção & controle , Adulto , Relação Dose-Resposta a Droga , Humanos , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Tromboelastografia , Trombose/sangue , Trombose/etiologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA