Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell ; 182(6): 1419-1440.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810438

RESUMO

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Células Mieloides/imunologia , Mielopoese , Pneumonia Viral/imunologia , Adulto , Idoso , Antígenos CD11/genética , Antígenos CD11/metabolismo , COVID-19 , Células Cultivadas , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Feminino , Antígenos HLA-DR/genética , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Células Mieloides/citologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Proteoma/genética , Proteoma/metabolismo , Proteômica , Análise de Célula Única
2.
Clin Infect Dis ; 76(6): 1050-1058, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318608

RESUMO

BACKGROUND: The microbial etiology of prosthetic valve infective endocarditis (PVE) can be difficult to identify. Our aim was to investigate the benefit of molecular imaging technique fluorescence in situ hybridization (FISH) combined with 16S rRNA-gene polymerase chain reaction (PCR) and sequencing (FISHseq) for the analysis of infected prosthetic heart valves. METHODS: We retrospectively evaluated the diagnostic outcome of 113 prosthetic valves from 105 patients with suspected PVE, treated in 2003-2013 in the Department of Cardiac Surgery, Charité University Medicine Berlin. Each prosthetic valve underwent cultural diagnostics and was routinely examined by FISH combined with 16S rRNA gene PCR and sequencing. We compared classical microbiological culture outcomes (blood and valve cultures) with FISHseq results and evaluated the diagnostic impact of the molecular imaging technique. RESULTS: Conventional microbiological diagnostic alone turned out to be insufficient, as 67% of preoperative blood cultures were noninformative (negative, inconclusive, or not obtained) and 67% of valve cultures remained negative. FISHseq improved the conventional cultural diagnostic methods in PVE in 30% of the cases and increased diagnostic accuracy. Of the valve culture-negative PVE cases, FISHseq succeeded in identifying the causative pathogen in 35%. CONCLUSIONS: FISHseq improves PVE diagnostics, complementing conventional cultural methods. In addition to species identification, FISH provides information about the severity of PVE and state of the pathogens (eg, stage of biofilm formation, activity, and localization on and within the prosthetic material). As a molecular imaging technique, FISHseq enables the unambiguous discrimination of skin flora as contaminant or infectious agent.


Assuntos
Endocardite Bacteriana , Endocardite , Próteses Valvulares Cardíacas , Infecções Relacionadas à Prótese , Humanos , Endocardite Bacteriana/microbiologia , Próteses Valvulares Cardíacas/efeitos adversos , Estudos Retrospectivos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Infecções Relacionadas à Prótese/microbiologia , Endocardite/etiologia , Imagem Molecular
3.
Emerg Infect Dis ; 29(11): 2229-2237, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877517

RESUMO

Pandoraea spp. are gram-negative, nonfermenting rods mainly known to infect patients with cystic fibrosis (CF). Outbreaks have been reported from several CF centers. We report a Pandoraea spp. outbreak comprising 24 non-CF patients at a large university hospital and a neighboring heart center in Germany during July 2019-December 2021. Common features in the patients were critical illness, invasive ventilation, antimicrobial pretreatment, and preceding surgery. Complicated and relapsing clinical courses were observed in cases with intraabdominal infections but not those with lower respiratory tract infections. Genomic analysis of 15 isolates identified Pandoraea commovens as the genetically most similar species and confirmed the clonality of the outbreak strain, designated P. commovens strain LB-19-202-79. The strain exhibited resistance to most antimicrobial drugs except ampicillin/sulbactam, imipenem, and trimethoprim/sulfamethoxazole. Our findings suggest Pandoraea spp. can spread among non-CF patients and underscore that clinicians and microbiologists should be vigilant in detecting and assessing unusual pathogens.


Assuntos
Anti-Infecciosos , Burkholderiaceae , Fibrose Cística , Humanos , Fibrose Cística/complicações , Fibrose Cística/epidemiologia , Bactérias Gram-Negativas , Combinação Trimetoprima e Sulfametoxazol , Burkholderiaceae/genética , Alemanha/epidemiologia
4.
J Antimicrob Chemother ; 78(7): 1586-1598, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37170886

RESUMO

BACKGROUND: The role of molnupiravir for coronavirus disease 2019 (COVID-19) treatment is unclear. METHODS: We conducted a systematic review until 1 November 2022 searching for randomized controlled trials (RCTs) involving COVID-19 patients comparing molnupiravir [±standard of care (SoC)] versus SoC and/or placebo. Data were pooled in random-effects meta-analyses. Certainty of evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS: Nine RCTs were identified, eight investigated outpatients (29 254 participants) and one inpatients (304 participants). Compared with placebo/SoC, molnupiravir does not reduce mortality [risk ratio (RR) 0.27, 95% CI 0.07-1.02, high-certainty evidence] and probably does not reduce the risk for 'hospitalization or death' (RR 0.81, 95% CI 0.55-1.20, moderate-certainty evidence) by Day 28 in COVID-19 outpatients. We are uncertain whether molnupiravir increases symptom resolution by Day 14 (RR 1.20, 95% CI 1.02-1.41, very-low-certainty evidence) but it may make no difference by Day 28 (RR 1.05, 95% CI 0.92-1.19, low-certainty evidence). In inpatients, molnupiravir may increase mortality by Day 28 compared with placebo (RR 3.78, 95% CI 0.50-28.82, low-certainty evidence). There is little to no difference in serious adverse and adverse events during the study period in COVID-19 inpatients/outpatients treated with molnupiravir compared with placebo/SoC (moderate- to high-certainty evidence). CONCLUSIONS: In a predominantly immunized population of COVID-19 outpatients, molnupiravir has no effect on mortality, probably none on 'hospitalization or death' and effects on symptom resolution are uncertain. Molnupiravir was safe during the study period in outpatients although a potential increase in inpatient mortality requires careful monitoring in ongoing clinical research. Our analysis does not support routine use of molnupiravir for COVID-19 treatment in immunocompetent individuals.


Assuntos
COVID-19 , Humanos , SARS-CoV-2
5.
Eur Radiol ; 33(12): 9296-9308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450054

RESUMO

OBJECTIVES: This study aims to describe physicians' perspectives on the use of computed tomography (CT) in patients with sepsis. METHODS: In January 2022, physicians of a large European university medical center were surveyed using a web-based questionnaire asking about their views on the role of CT in sepsis. A total of 371 questionnaires met the inclusion criteria and were analyzed using work experience, workplace, and medical specialty of physicians as variables. Chi-square tests were performed. RESULTS: Physicians considered the ability to detect an unknown focus as the greatest benefit of CT scans in sepsis (70.9%, n = 263/371). Two clinical criteria - "signs of decreased vigilance" (89.2%, n = 331/371) and "increased catecholamine demand" (84.7%, n = 314/371) - were considered highly relevant for a CT request. Elevated procalcitonin (82.7%, n = 307/371) and lactate levels (83.6%, n = 310/371) were consistently found to be critical laboratory values to request a CT. As long as there is evidence of infection in one organ region, most physicians (42.6%, n = 158/371) would order a CT scan based on clinical assessment. Combined examination of the chest, abdomen, and pelvis was favored (34.8%, n = 129/371) in cases without clinical clues of an infection source. A time window of ≥ 1-6 h was preferred for both CT examinations (53.9%, n = 200/371) and CT-guided interventions (59.3%, n = 220/371) in patients with sepsis. CONCLUSION: Despite much consensus, there are significant differences in attitudes towards the use of CT in septic patients among physicians from different workplaces and medical specialties. Knowledge of these perspectives may improve patient management and interprofessional communication. KEY POINTS: Despite interdisciplinary consensus on the use of CT in sepsis, statistically significant differences in the responses are apparent among physicians from different workplaces and medical specialties. The detection of a previously unknown source of infection and the ability to plan interventions and/or surgery based on CT findings are considered key advantages of CT in septic patients. Timing of CT reflects the requirements of specific disciplines.


Assuntos
Médicos , Sepse , Humanos , Sepse/diagnóstico por imagem , Sepse/etiologia , Centros Médicos Acadêmicos , Tomografia Computadorizada por Raios X , Inquéritos e Questionários
6.
Infection ; 51(2): 483-487, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35960457

RESUMO

Berlin is amongst the cities most affected by the current monkeypox outbreak. Here, we report clinical characteristics of the first patients with confirmed monkeypox admitted to our center. We analyzed anamnestic, clinical, and laboratory data. Within a period of 2 weeks, six patients were hospitalized in our unit. All were MSM and had practiced condomless receptive anal intercourse in the weeks preceding admission. The chief complaint in all patients but one was severe anal pain unprecedented in severity. Investigations revealed proctitis, as well as anal and rectal ulcers with detection of monkeypox virus. Our findings support the hypothesis that sexual transmission plays a role in the current outbreak.


Assuntos
Infecções por HIV , Mpox , Masculino , Humanos , Homossexualidade Masculina , Infecções por HIV/epidemiologia , Comportamento Sexual , Dor
7.
Cochrane Database Syst Rev ; 1: CD014962, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695483

RESUMO

BACKGROUND: Remdesivir is an antiviral medicine approved for the treatment of mild-to-moderate coronavirus disease 2019 (COVID-19). This led to widespread implementation, although the available evidence remains inconsistent. This update aims to fill current knowledge gaps by identifying, describing, evaluating, and synthesising all evidence from randomised controlled trials (RCTs) on the effects of remdesivir on clinical outcomes in COVID-19. OBJECTIVES: To assess the effects of remdesivir and standard care compared to standard care plus/minus placebo on clinical outcomes in patients treated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which comprises the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, and medRxiv) as well as Web of Science (Science Citation Index Expanded and Emerging Sources Citation Index) and WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies, without language restrictions. We conducted the searches on 31 May 2022. SELECTION CRITERIA: We followed standard Cochrane methodology. We included RCTs evaluating remdesivir and standard care for the treatment of SARS-CoV-2 infection compared to standard care plus/minus placebo irrespective of disease severity, gender, ethnicity, or setting. We excluded studies that evaluated remdesivir for the treatment of other coronavirus diseases. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess risk of bias in included studies, we used the Cochrane RoB 2 tool for RCTs. We rated the certainty of evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach for outcomes that were reported according to our prioritised categories: all-cause mortality, in-hospital mortality, clinical improvement (being alive and ready for discharge up to day 28) or worsening (new need for invasive mechanical ventilation or death up to day 28), quality of life, serious adverse events, and adverse events (any grade). We differentiated between non-hospitalised individuals with asymptomatic SARS-CoV-2 infection or mild COVID-19 and hospitalised individuals with moderate to severe COVID-19. MAIN RESULTS: We included nine RCTs with 11,218 participants diagnosed with SARS-CoV-2 infection and a mean age of 53.6 years, of whom 5982 participants were randomised to receive remdesivir. Most participants required low-flow oxygen at baseline. Studies were mainly conducted in high- and upper-middle-income countries. We identified two studies that are awaiting classification and five ongoing studies. Effects of remdesivir in hospitalised individuals with moderate to severe COVID-19 With moderate-certainty evidence, remdesivir probably makes little or no difference to all-cause mortality at up to day 28 (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.81 to 1.06; risk difference (RD) 8 fewer per 1000, 95% CI 21 fewer to 6 more; 4 studies, 7142 participants), day 60 (RR 0.85, 95% CI 0.69 to 1.05; RD 35 fewer per 1000, 95% CI 73 fewer to 12 more; 1 study, 1281 participants), or in-hospital mortality at up to day 150 (RR 0.93, 95% CI 0.84 to 1.03; RD 11 fewer per 1000, 95% CI 25 fewer to 5 more; 1 study, 8275 participants). Remdesivir probably increases the chance of clinical improvement at up to day 28 slightly (RR 1.11, 95% CI 1.06 to 1.17; RD 68 more per 1000, 95% CI 37 more to 105 more; 4 studies, 2514 participants; moderate-certainty evidence). It probably decreases the risk of clinical worsening within 28 days (hazard ratio (HR) 0.67, 95% CI 0.54 to 0.82; RD 135 fewer per 1000, 95% CI 198 fewer to 69 fewer; 2 studies, 1734 participants, moderate-certainty evidence). Remdesivir may make little or no difference to the rate of adverse events of any grade (RR 1.04, 95% CI 0.92 to 1.18; RD 23 more per 1000, 95% CI 46 fewer to 104 more; 4 studies, 2498 participants; low-certainty evidence), or serious adverse events (RR 0.84, 95% CI 0.65 to 1.07; RD 44 fewer per 1000, 95% CI 96 fewer to 19 more; 4 studies, 2498 participants; low-certainty evidence). We considered risk of bias to be low, with some concerns for mortality and clinical course. We had some concerns for safety outcomes because participants who had died did not contribute information. Without adjustment, this leads to an uncertain amount of missing values and the potential for bias due to missing data. Effects of remdesivir in non-hospitalised individuals with mild COVID-19 One of the nine RCTs was conducted in the outpatient setting and included symptomatic people with a risk of progression. No deaths occurred within the 28 days observation period. We are uncertain about clinical improvement due to very low-certainty evidence. Remdesivir probably decreases the risk of clinical worsening (hospitalisation) at up to day 28 (RR 0.28, 95% CI 0.11 to 0.75; RD 46 fewer per 1000, 95% CI 57 fewer to 16 fewer; 562 participants; moderate-certainty evidence). We did not find any data for quality of life. Remdesivir may decrease the rate of serious adverse events at up to 28 days (RR 0.27, 95% CI 0.10 to 0.70; RD 49 fewer per 1000, 95% CI 60 fewer to 20 fewer; 562 participants; low-certainty evidence), but it probably makes little or no difference to the risk of adverse events of any grade (RR 0.91, 95% CI 0.76 to 1.10; RD 42 fewer per 1000, 95% CI 111 fewer to 46 more; 562 participants; moderate-certainty evidence). We considered risk of bias to be low for mortality, clinical improvement, and safety outcomes. We identified a high risk of bias for clinical worsening. AUTHORS' CONCLUSIONS: Based on the available evidence up to 31 May 2022, remdesivir probably has little or no effect on all-cause mortality or in-hospital mortality of individuals with moderate to severe COVID-19. The hospitalisation rate was reduced with remdesivir in one study including participants with mild to moderate COVID-19. It may be beneficial in the clinical course for both hospitalised and non-hospitalised patients, but certainty remains limited. The applicability of the evidence to current practice may be limited by the recruitment of participants from mostly unvaccinated populations exposed to early variants of the SARS-CoV-2 virus at the time the studies were undertaken.  Future studies should provide additional data on the efficacy and safety of remdesivir for defined core outcomes in COVID-19 research, especially for different population subgroups.


Assuntos
COVID-19 , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Progressão da Doença , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Cochrane Database Syst Rev ; 7: CD015078, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489818

RESUMO

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) can cause thrombotic events that lead to severe complications or death. Antiplatelet agents, such as acetylsalicylic acid, have been shown to effectively reduce thrombotic events in other diseases: they could influence the course of COVID-19 in general. OBJECTIVES: To assess the efficacy and safety of antiplatelets given with standard care compared to no treatment or standard care (with/without placebo) for adults with COVID-19. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which comprises MEDLINE (PubMed), Embase, ClinicalTrials.gov, WHO ICTRP, medRxiv, CENTRAL), Web of Science, WHO COVID-19 Global literature on coronavirus disease and the Epistemonikos COVID-19 L*OVE Platform to identify completed and ongoing studies without language restrictions to December 2022. SELECTION CRITERIA: We followed standard Cochrane methodology. We included randomised controlled trials (RCTs) evaluating antiplatelet agents for the treatment of COVID-19 in adults with COVID-19, irrespective of disease severity, gender or ethnicity. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane risk of bias tool (RoB 2) for RCTs. We rated the certainty of evidence using the GRADE approach for the outcomes. MAIN RESULTS: Antiplatelets plus standard care versus standard care (with/without placebo) Adults with a confirmed diagnosis of moderate to severe COVID-19 We included four studies (17,541 participants) that recruited hospitalised people with a confirmed diagnosis of moderate to severe COVID-19. A total of 8964 participants were analysed in the antiplatelet arm (either with cyclooxygenase inhibitors or P2Y12 inhibitors) and 8577 participants in the control arm. Most people were older than 50 years and had comorbidities such as hypertension, lung disease or diabetes. The studies were conducted in high- to lower middle-income countries prior to wide-scale vaccination programmes. Antiplatelets compared to standard care: - probably result in little to no difference in 28-day mortality (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.85 to 1.05; 3 studies, 17,249 participants; moderate-certainty evidence). In absolute terms, this means that for every 177 deaths per 1000 people not receiving antiplatelets, there were 168 deaths per 1000 people who did receive the intervention (95% CI 151 to 186 per 1000 people); - probably result in little to no difference in worsening (new need for invasive mechanical ventilation or death up to day 28) (RR 0.95, 95% CI 0.90 to 1.01; 2 studies, 15,266 participants; moderate-certainty evidence); - probably result in little to no difference in improvement (participants discharged alive up to day 28) (RR 1.00, 95% CI 0.96 to 1.04; 2 studies, 15,454 participants; moderate-certainty evidence); - probably result in a slight reduction of thrombotic events at longest follow-up (RR 0.90, 95% CI 0.80 to 1.02; 4 studies, 17,518 participants; moderate-certainty evidence); - may result in a slight increase in serious adverse events at longest follow-up (Peto odds ratio (OR) 1.57, 95% CI 0.48 to 5.14; 1 study, 1815 participants; low-certainty evidence), but non-serious adverse events during study treatment were not reported; - probably increase the occurrence of major bleeding events at longest follow-up (Peto OR 1.68, 95% CI 1.29 to 2.19; 4 studies, 17,527 participants; moderate-certainty evidence). Adults with a confirmed diagnosis of asymptomatic SARS-CoV-2 infection or mild COVID-19 We included two RCTs allocating participants, of whom 4209 had confirmed mild COVID-19 and were not hospitalised. A total of 2109 participants were analysed in the antiplatelet arm (treated with acetylsalicylic acid) and 2100 participants in the control arm. No study included people with asymptomatic SARS-CoV-2 infection. Antiplatelets compared to standard care: - may result in little to no difference in all-cause mortality at day 45 (Peto OR 1.00, 95% CI 0.45 to 2.22; 2 studies, 4209 participants; low-certainty evidence); - may slightly decrease the incidence of new thrombotic events up to day 45 (Peto OR 0.37, 95% CI 0.09 to 1.46; 2 studies, 4209 participants; low-certainty evidence); - may make little or no difference to the incidence of serious adverse events up to day 45 (Peto OR 1.00, 95% CI 0.60 to 1.64; 1 study, 3881 participants; low-certainty evidence), but non-serious adverse events were not reported. The evidence is very uncertain about the effect of antiplatelets on the following outcomes (compared to standard care plus placebo): - admission to hospital or death up to day 45 (Peto OR 0.79, 95% CI 0.57 to 1.10; 2 studies, 4209 participants; very low-certainty evidence); - major bleeding events up to longest follow-up (no event occurred in 328 participants; very low-certainty evidence). Quality of life and adverse events during study treatment were not reported. AUTHORS' CONCLUSIONS: In people with confirmed or suspected COVID-19 and moderate to severe disease, we found moderate-certainty evidence that antiplatelets probably result in little to no difference in 28-day mortality, clinical worsening or improvement, but probably result in a slight reduction in thrombotic events. They probably increase the occurrence of major bleeding events. Low-certainty evidence suggests that antiplatelets may result in a slight increase in serious adverse events. In people with confirmed COVID-19 and mild symptoms, we found low-certainty evidence that antiplatelets may result in little to no difference in 45-day mortality and serious adverse events, and may slightly reduce thrombotic events. The effects on the combined outcome admission to hospital or death up to day 45 and major bleeding events are very uncertain. Quality of life was not reported. Included studies were conducted in high- to lower middle-income settings using antiplatelets prior to vaccination roll-outs. We identified a lack of evidence concerning quality of life assessments, adverse events and people with asymptomatic infection. The 14 ongoing and three completed, unpublished RCTs that we identified in trial registries address similar settings and research questions as in the current body of evidence. We expect to incorporate the findings of these studies in future versions of this review.


Assuntos
COVID-19 , Inibidores da Agregação Plaquetária , Adulto , Humanos , SARS-CoV-2 , Aspirina , Infecções Assintomáticas
9.
Infection ; 50(6): 1441-1452, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35420370

RESUMO

PURPOSE: To investigate antimicrobial use and primary and nosocomial infections in hospitalized COVID-19 patients to provide data for guidance of antimicrobial therapy. METHODS: Prospective observational cohort study conducted at Charité-Universitätsmedizin Berlin, including patients hospitalized with SARS-CoV-2-infection between March and November 2020. RESULTS: 309 patients were included, 231 directly admitted and 78 transferred from other centres. Antimicrobial therapy was initiated in 62/231 (26.8%) of directly admitted and in 44/78 (56.4%) of transferred patients. The rate of microbiologically confirmed primary co-infections was 4.8% (11/231). Although elevated in most COVID-19 patients, C-reactive protein and procalcitonin levels were higher in patients with primary co-infections than in those without (median CRP 110 mg/l, IQR 51-222 vs. 36, IQR 11-101, respectively; p < 0.0001). Nosocomial bloodstream and respiratory infections occurred in 47/309 (15.2%) and 91/309 (29.4%) of patients, respectively, and were associated with need for invasive mechanical ventilation (OR 45.6 95%CI 13.7-151.8 and 104.6 95%CI 41.5-263.5, respectively), extracorporeal membrane oxygenation (OR 14.3 95%CI 6.5-31.5 and 16.5 95%CI 6.5-41.6, respectively), and haemodialysis (OR 31.4 95%CI 13.9-71.2 and OR 22.3 95%CI 11.2-44.2, respectively). The event of any nosocomial infection was significantly associated with in-hospital death (33/99 (33.3%) with nosocomial infection vs. 23/210 (10.9%) without, OR 4.1 95%CI 2.2-7.3). CONCLUSIONS: Primary co-infections are rare, yet antimicrobial use was frequent, mostly based on clinical worsening and elevated inflammation markers without clear evidence for co-infection. More reliable diagnostic prospects may help to reduce overtreatment. Rates of nosocomial infections are substantial in severely ill patients on organ support and associated with worse patient outcome.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , COVID-19 , Coinfecção , Infecção Hospitalar , Humanos , COVID-19/epidemiologia , Coinfecção/tratamento farmacológico , Coinfecção/epidemiologia , SARS-CoV-2 , Mortalidade Hospitalar , Estudos Prospectivos , Anti-Infecciosos/uso terapêutico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia
10.
Infection ; 50(1): 93-106, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34228347

RESUMO

PURPOSE: This executive summary of a national living guideline aims to provide rapid evidence based recommendations on the role of drug interventions in the treatment of hospitalized patients with COVID-19. METHODS: The guideline makes use of a systematic assessment and decision process using an evidence to decision framework (GRADE) as recommended standard WHO (2021). Recommendations are consented by an interdisciplinary panel. Evidence analysis and interpretation is supported by the CEOsys project providing extensive literature searches and living (meta-) analyses. For this executive summary, selected key recommendations on drug therapy are presented including the quality of the evidence and rationale for the level of recommendation. RESULTS: The guideline contains 11 key recommendations for COVID-19 drug therapy, eight of which are based on systematic review and/or meta-analysis, while three recommendations represent consensus expert opinion. Based on current evidence, the panel makes strong recommendations for corticosteroids (WHO scale 5-9) and prophylactic anticoagulation (all hospitalized patients with COVID-19) as standard of care. Intensified anticoagulation may be considered for patients with additional risk factors for venous thromboembolisms (VTE) and a low bleeding risk. The IL-6 antagonist tocilizumab may be added in case of high supplemental oxygen requirement and progressive disease (WHO scale 5-6). Treatment with nMABs may be considered for selected inpatients with an early SARS-CoV-2 infection that are not hospitalized for COVID-19. Convalescent plasma, azithromycin, ivermectin or vitamin D3 should not be used in COVID-19 routine care. CONCLUSION: For COVID-19 drug therapy, there are several options that are sufficiently supported by evidence. The living guidance will be updated as new evidence emerges.


Assuntos
COVID-19 , COVID-19/terapia , Hospitalização , Humanos , Imunização Passiva , Guias de Prática Clínica como Assunto , SARS-CoV-2 , Soroterapia para COVID-19
11.
Transpl Int ; 35: 10109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431640

RESUMO

Background: Antiviral drugs have shown little impact in patient infected with acute respiratory coronavirus 2 (SARS-CoV-2). Especially for immunocompromised persons positive for SARS-CoV-2, novel treatments are warranted. Recently, the U.S. FDA has granted an emergency use authorization (EUA) to two monoclonal antibodies (mAb) targeting the viral spike protein: bamlanivimab and casivirimab and imdevimab. As per the EUA, all SARS-CoV-2 positive organ transplant recipients can receive mAb treatment. Patients and methods: We queried our center's transplant registry to identify SARS-CoV-2 infected recipients treated with single doses of either Bamlanivimab or casivirimab/imdevimab up to May 31, 2021. We analyzed clinical outcomes, renal function and virus-specific antibodies. The co-primary endpoints were hospitalization due to COVID-19 and SARS-CoV-2 RT-PCR negativity. Results: Thirteen patients at a median interval of 55 (IQR, 26-110) months from transplant were treated: 8 with bamlanivimab and 5 with casivirimab/imdevimab. In all, 4/13 (31%) patients were hospitalized at some time, while 11/13 (85%) achieved PCR negativity. 2/4 hospitalized patients received mAb as rescue treatment. Overall mortality was 23%, with one death attributable to transplant-associated lymphoma. All six patients infected with the B 1.1.7 variant were alive at last contact. Conclusion: mAb treatment appears effective when administered early to SARS-CoV-2-infected transplant recipients.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Humanos , Rim/fisiologia , Pâncreas , SARS-CoV-2 , Transplantados
12.
Crit Care ; 26(1): 30, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090528

RESUMO

PURPOSE: Corticosteroids, in particular dexamethasone, are one of the primary treatment options for critically ill COVID-19 patients. However, there are a growing number of cases that involve COVID-19-associated pulmonary aspergillosis (CAPA), and it is unclear whether dexamethasone represents a risk factor for CAPA. Our aim was to investigate a possible association of the recommended dexamethasone therapy with a risk of CAPA. METHODS: We performed a study based on a cohort of COVID-19 patients treated in 2020 in our 13 intensive care units at Charité Universitätsmedizin Berlin. We used ECMM/ISHM criteria for the CAPA diagnosis and performed univariate and multivariable analyses of clinical parameters to identify risk factors that could result in a diagnosis of CAPA. RESULTS: Altogether, among the n = 522 intensive care patients analyzed, n = 47 (9%) patients developed CAPA. CAPA patients had a higher simplified acute physiology score (SAPS) (64 vs. 53, p < 0.001) and higher levels of IL-6 (1,005 vs. 461, p < 0.008). They more often had severe acute respiratory distress syndrome (ARDS) (60% vs. 41%, p = 0.024), renal replacement therapy (60% vs. 41%, p = 0.024), and they were more likely to die (64% vs. 48%, p = 0.049). The multivariable analysis showed dexamethasone (OR 3.110, CI95 1.112-8.697) and SAPS (OR 1.063, CI95 1.028-1.098) to be independent risk factors for CAPA. CONCLUSION: In our study, dexamethasone therapy as recommended for COVID-19 was associated with a significant three times increase in the risk of CAPA. TRIAL REGISTRATION: Registration number DRKS00024578, Date of registration March 3rd, 2021.


Assuntos
COVID-19 , Aspergilose Pulmonar , Corticosteroides/efeitos adversos , Cuidados Críticos , Humanos , Fatores de Risco , SARS-CoV-2
13.
Cochrane Database Syst Rev ; 6: CD015017, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35726131

RESUMO

BACKGROUND: Ivermectin, an antiparasitic agent, inhibits the replication of viruses in vitro. The molecular hypothesis of ivermectin's antiviral mode of action suggests an inhibitory effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication in early stages of infection. Currently, evidence on ivermectin for prevention of SARS-CoV-2 infection and COVID-19 treatment is conflicting. OBJECTIVES: To assess the efficacy and safety of ivermectin plus standard of care compared to standard of care plus/minus placebo, or any other proven intervention for people with COVID-19 receiving treatment as inpatients or outpatients, and for prevention of an infection with SARS-CoV-2 (postexposure prophylaxis). SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, Web of Science (Emerging Citation Index and Science Citation Index), WHO COVID-19 Global literature on coronavirus disease, and HTA database weekly to identify completed and ongoing trials without language restrictions to 16 December 2021. Additionally, we included trials with > 1000 participants up to April 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs) comparing ivermectin to standard of care, placebo, or another proven intervention for treatment of people with confirmed COVID-19 diagnosis, irrespective of disease severity or treatment setting, and for prevention of SARS-CoV-2 infection. Co-interventions had to be the same in both study arms.  For this review update, we reappraised eligible trials for research integrity: only RCTs prospectively registered in a trial registry according to WHO guidelines for clinical trial registration were eligible for inclusion. DATA COLLECTION AND ANALYSIS: We assessed RCTs for bias, using the Cochrane RoB 2 tool. We used GRADE to rate the certainty of evidence for outcomes in the following settings and populations: 1) to treat inpatients with moderate-to-severe COVID-19, 2) to treat outpatients with mild COVID-19 (outcomes: mortality, clinical worsening or improvement, (serious) adverse events, quality of life, and viral clearance), and 3) to prevent SARS-CoV-2 infection (outcomes: SARS-CoV-2 infection, development of COVID-19 symptoms, admission to hospital, mortality, adverse events and quality of life). MAIN RESULTS: We excluded seven of the 14 trials included in the previous review version; six were not prospectively registered and one was non-randomized. This updated review includes 11 trials with 3409 participants investigating ivermectin plus standard of care compared to standard of care plus/minus placebo. No trial investigated ivermectin for prevention of infection or compared ivermectin to an intervention with proven efficacy. Five trials treated participants with moderate COVID-19 (inpatient settings); six treated mild COVID-19 (outpatient settings). Eight trials were double-blind and placebo-controlled, and three were open-label. We assessed around 50% of the trial results as low risk of bias. We identified 31 ongoing trials. In addition, there are 28 potentially eligible trials without publication of results, or with disparities in the reporting of the methods and results, held in 'awaiting classification' until the trial authors clarify questions upon request. Ivermectin for treating COVID-19 in inpatient settings with moderate-to-severe disease We are uncertain whether ivermectin plus standard of care compared to standard of care plus/minus placebo reduces or increases all-cause mortality at 28 days (risk ratio (RR) 0.60, 95% confidence interval (CI) 0.14 to 2.51; 3 trials, 230 participants; very low-certainty evidence); or clinical worsening, assessed by participants with new need for invasive mechanical ventilation or death at day 28 (RR 0.82, 95% CI 0.33 to 2.04; 2 trials, 118 participants; very low-certainty evidence); or serious adverse events during the trial period (RR 1.55, 95% CI 0.07 to 35.89; 2 trials, 197 participants; very low-certainty evidence). Ivermectin plus standard of care compared to standard of care plus placebo may have little or no effect on clinical improvement, assessed by the number of participants discharged alive at day 28 (RR 1.03, 95% CI 0.78 to 1.35; 1 trial, 73 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.04, 95% CI 0.61 to 1.79; 3 trials, 228 participants; low-certainty evidence); and on viral clearance at 7 days (RR 1.12, 95% CI 0.80 to 1.58; 3 trials, 231 participants; low-certainty evidence). No trial investigated quality of life at any time point. Ivermectin for treating COVID-19 in outpatient settings with asymptomatic or mild disease Ivermectin plus standard of care compared to standard of care plus/minus placebo probably has little or no effect on all-cause mortality at day 28 (RR 0.77, 95% CI 0.47 to 1.25; 6 trials, 2860 participants; moderate-certainty evidence) and little or no effect on quality of life, measured with the PROMIS Global-10 scale (physical component mean difference (MD) 0.00, 95% CI -0.98 to 0.98; and mental component MD 0.00, 95% CI -1.08 to 1.08; 1358 participants; high-certainty evidence). Ivermectin may have little or no effect on clinical worsening, assessed by admission to hospital or death within 28 days (RR 1.09, 95% CI 0.20 to 6.02; 2 trials, 590 participants; low-certainty evidence); on clinical improvement, assessed by the number of participants with all initial symptoms resolved up to 14 days (RR 0.90, 95% CI 0.60 to 1.36; 2 trials, 478 participants; low-certainty evidence); on serious adverse events (RR 2.27, 95% CI 0.62 to 8.31; 5 trials, 1502 participants; low-certainty evidence); on any adverse events during the trial period (RR 1.24, 95% CI 0.87 to 1.76; 5 trials, 1502 participants; low-certainty evidence); and on viral clearance at day 7 compared to placebo (RR 1.01, 95% CI 0.69 to 1.48; 2 trials, 331 participants; low-certainty evidence). None of the trials reporting duration of symptoms were eligible for meta-analysis. AUTHORS' CONCLUSIONS: For outpatients, there is currently low- to high-certainty evidence that ivermectin has no beneficial effect for people with COVID-19. Based on the very low-certainty evidence for inpatients, we are still uncertain whether ivermectin prevents death or clinical worsening or increases serious adverse events, while there is low-certainty evidence that it has no beneficial effect regarding clinical improvement, viral clearance and adverse events. No evidence is available on ivermectin to prevent SARS-CoV-2 infection. In this update, certainty of evidence increased through higher quality trials including more participants. According to this review's living approach, we will continually update our search.


Assuntos
COVID-19 , Humanos , Ivermectina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , SARS-CoV-2 , Índice de Gravidade de Doença
14.
Cochrane Database Syst Rev ; 3: CD015125, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35262185

RESUMO

BACKGROUND: Inhaled corticosteroids are well established for the long-term treatment of inflammatory respiratory diseases such as asthma or chronic obstructive pulmonary disease. They have been investigated for the treatment of coronavirus disease 2019 (COVID-19). The anti-inflammatory action of inhaled corticosteroids might have the potential to reduce the risk of severe illness resulting from hyperinflammation in COVID-19. OBJECTIVES: To assess whether inhaled corticosteroids are effective and safe in the treatment of COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 7 October 2021. SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating inhaled corticosteroids for COVID-19, irrespective of disease severity, age, sex, or ethnicity. We included the following interventions: any type or dose of inhaled corticosteroids. We included the following comparison: inhaled corticosteroids plus standard care versus standard care (with or without placebo). We excluded studies examining nasal or topical steroids. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. For risk of bias assessment, we used the Cochrane RoB 2 tool. We rated the certainty of evidence using the GRADE approach for the outcomes of mortality, admission to hospital or death, symptom resolution, time to symptom resolution, serious adverse events, adverse events, and infections. MAIN RESULTS: Inhaled corticosteroids plus standard care versus standard care (with/without placebo) - People with a confirmed diagnosis of moderate-to-severe COVID-19 We found no studies that included people with a confirmed diagnosis of moderate-to-severe COVID-19. - People with a confirmed diagnosis of asymptomatic SARS-CoV-2 infection or mild COVID-19 We included three RCTs allocating 3607 participants, of whom 2490 had confirmed mild COVID-19. We analysed a subset of the total number of participants recruited to the studies (2171, 52% female) as some trials had a platform design where not all participants were allocated to treatment groups simultaneously. The included studies were community-based, recruiting people who were able to use inhaler devices to deliver steroids and relied on remote assessment and self-reporting of outcomes. Most people were older than 50 years and had co-morbidities such as hypertension, lung disease, or diabetes. The studies were conducted in high-income countries prior to wide-scale vaccination programmes. A total of 1057 participants were analysed in the inhaled corticosteroid arm (budesonide: 860 participants; ciclesonide: 197 participants), and 1075 participants in the control arm. No studies included people with asymptomatic SARS-CoV-2 infection. With respect to the following outcomes, inhaled corticosteroids compared to standard care: - may result in little to no difference in all-cause mortality (at up to day 30) (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.22 to 1.67; 2132 participants; low-certainty evidence). In absolute terms, this means that for every nine deaths per 1000 people not receiving inhaled corticosteroids, there were six deaths per 1000 people who did receive the intervention (95% CI 2 to 16 per 1000 people); - probably reduces admission to hospital or death (at up to 30 days) (RR 0.72, 95% CI 0.51 to 0.99; 2025 participants; moderate-certainty evidence); - probably increases resolution of all initial symptoms at day 14 (RR 1.19, 95% CI 1.09 to 1.30; 1986 participants; moderate-certainty evidence); - may reduce the duration to symptom resolution (at up to day 30) (by -4.00 days, 95% CI -6.22 to -1.78 less than control group rate of 12 days; 139 participants; low-certainty evidence); - the evidence is very uncertain about the effect on serious adverse events (during study period) (RR 0.51, 95% CI 0.09 to 2.76; 1586 participants; very low-certainty evidence); - may result in little to no difference in adverse events (at up to day 30) (RR 0.78, 95% CI 0.47 to 1.31; 400 participants; low-certainty evidence); - may result in little to no difference in infections (during study period) (RR 0.88, 95% CI 0.30 to 2.58; 400 participants; low-certainty evidence). As studies did not report outcomes for subgroups (e.g. age, ethnicity, sex), we did not perform subgroup analyses. AUTHORS' CONCLUSIONS: In people with confirmed COVID-19 and mild symptoms who are able to use inhaler devices, we found moderate-certainty evidence that inhaled corticosteroids probably reduce the combined endpoint of admission to hospital or death and increase the resolution of all initial symptoms at day 14. Low-certainty evidence suggests that corticosteroids make little to no difference in all-cause mortality up to day 30 and may decrease the duration to symptom resolution. We do not know whether inhaled corticosteroids increase or decrease serious adverse events due to heterogeneity in the way they were reported across the studies. There is low-certainty evidence that inhaled corticosteroids may decrease infections. The evidence we identified came from studies in high-income settings using budesonide and ciclesonide prior to vaccination roll-outs. We identified a lack of evidence concerning quality of life assessments, serious adverse events, and people with asymptomatic infection or with moderate-to-severe COVID-19. The 10 ongoing and four completed, unpublished RCTs that we identified in trial registries address similar settings and research questions as in the current body of evidence. We expect to incorporate the findings of these studies in future versions of this review. We monitor newly published results of RCTs on inhaled corticosteroids on a weekly basis and will update the review when the evidence or our certainty in the evidence changes.


Assuntos
Tratamento Farmacológico da COVID-19 , Corticosteroides , Causas de Morte , Feminino , Humanos , Masculino , Respiração Artificial , SARS-CoV-2
15.
Cochrane Database Syst Rev ; 9: CD015391, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103313

RESUMO

BACKGROUND: Fluvoxamine is a selective serotonin reuptake inhibitor (SSRI) that has been approved for the treatment of depression, obsessive-compulsive disorder, and a variety of anxiety disorders; it is available as an oral preparation. Fluvoxamine has not been approved for the treatment of infections, but has been used in the early treatment of people with mild to moderate COVID-19. As there are only a few effective therapies for people with COVID-19 in the community, a thorough understanding of the current evidence regarding the efficacy and safety of fluvoxamine as an anti-inflammatory and possible anti-viral treatment for COVID-19, based on randomised controlled trials (RCTs), is needed. OBJECTIVES: To assess the efficacy and safety of fluvoxamine in addition to standard care, compared to standard care (alone or with placebo), or any other active pharmacological comparator with proven efficacy for the treatment of COVID-19 outpatients and inpatients. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (including Cochrane Central Register of Controlled Trials, MEDLINE, Embase, ClinicalTrials.gov, WHO ICTRP, medRxiv), Web of Science and WHO COVID-19 Global literature on COVID-19 to identify completed and ongoing studies up to 1 February 2022. SELECTION CRITERIA: We included RCTs that compared fluvoxamine in addition to standard care (also including no intervention), with standard care (alone or with placebo), or any other active pharmacological comparator with proven efficacy in clinical trials for the treatment of people with confirmed COVID-19, irrespective of disease severity, in both inpatients and outpatients. Co-interventions needed to be the same in both study arms. We excluded studies comparing fluvoxamine to other pharmacological interventions with unproven efficacy. DATA COLLECTION AND ANALYSIS: We assessed risk of bias of primary outcomes using the Cochrane Risk of Bias 2 tool for RCTs. We used GRADE to rate the certainty of evidence to treat people with asymptomatic to severe COVID-19 for the primary outcomes including mortality, clinical deterioration, clinical improvement, quality of life, serious adverse events, adverse events of any grade, and suicide or suicide attempt. MAIN RESULTS: We identified two completed studies with a total of 1649 symptomatic participants. One study was conducted in the USA (study with 152 participants, 80 and 72 participants per study arm) and the other study in Brazil (study with 1497 high-risk participants for progression to severe disease, 741 and 756 participants per study arm) among outpatients with mild COVID-19. Both studies were double-blind, placebo-controlled trials in which participants were prescribed 100 mg fluvoxamine two or three times daily for a maximum of 15 days. We identified five ongoing studies and two studies awaiting classification (due to translation issues, and due to missing published data). We found no published studies comparing fluvoxamine to other pharmacological interventions of proven efficacy. We assessed both included studies to have an overall high risk of bias. Fluvoxamine for the treatment of COVID-19 in inpatients We did not identify any completed studies of inpatients. Fluvoxamine for the treatment of COVID-19 in outpatients Fluvoxamine in addition to standard care may slightly reduce all-cause mortality at day 28 (RR 0.69, 95% CI 0.38 to 1.27; risk difference (RD) 9 per 1000; 2 studies, 1649 participants; low-certainty evidence), and may reduce clinical deterioration defined as all-cause hospital admission or death before hospital admission (RR 0.55, 95% CI 0.16 to 1.89; RD 57 per 1000; 2 studies, 1649 participants; low-certainty evidence). We are very uncertain regarding the effect of fluvoxamine on serious adverse events (RR 0.56, 95% CI 0.15 to 2.03; RD 54 per 1000; 2 studies, 1649 participants; very low-certainty evidence) or adverse events of any grade (RR 1.06, 95% CI 0.82 to 1.37; RD 7 per 1000; 2 studies, 1649 participants; very low-certainty evidence). Neither of the studies reported on symptom resolution (clinical improvement), quality of life or suicide/suicide attempt. AUTHORS' CONCLUSIONS: Based on a low-certainty evidence, fluvoxamine may slightly reduce all-cause mortality at day 28, and may reduce the risk of admission to hospital or death in outpatients with mild COVID-19. However, we are very uncertain regarding the effect of fluvoxamine on serious adverse events, or any adverse events. In accordance with the living approach of this review, we will continually update our search and include eligible trials as they arise, to complete any gaps in the evidence.


Assuntos
Tratamento Farmacológico da COVID-19 , Deterioração Clínica , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
16.
Cochrane Database Syst Rev ; 11: CD014963, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385229

RESUMO

BACKGROUND: Systemic corticosteroids are used to treat people with COVID-19 because they counter hyper-inflammation. Existing evidence syntheses suggest a slight benefit on mortality. Nonetheless, size of effect, optimal therapy regimen, and selection of patients who are likely to benefit most are factors that remain to be evaluated. OBJECTIVES: To assess whether and at which doses systemic corticosteroids are effective and safe in the treatment of people with COVID-19, to explore equity-related aspects in subgroup analyses, and to keep up to date with the evolving evidence base using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes PubMed, Embase, CENTRAL, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 6 January 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated systemic corticosteroids for people with COVID-19. We included any type or dose of systemic corticosteroids and the following comparisons: systemic corticosteroids plus standard care versus standard care, different types, doses and timings (early versus late) of corticosteroids. We excluded corticosteroids in combination with other active substances versus standard care, topical or inhaled corticosteroids, and corticosteroids for long-COVID treatment. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodology. To assess the risk of bias in included studies, we used the Cochrane 'Risk of bias' 2 tool for RCTs. We rated the certainty of the evidence using the GRADE approach for the following outcomes: all-cause mortality up to 30 and 120 days, discharged alive (clinical improvement), new need for invasive mechanical ventilation or death (clinical worsening), serious adverse events, adverse events, hospital-acquired infections, and invasive fungal infections. MAIN RESULTS: We included 16 RCTs in 9549 participants, of whom 8271 (87%) originated from high-income countries. A total of 4532 participants were randomised to corticosteroid arms and the majority received dexamethasone (n = 3766). These studies included participants mostly older than 50 years and male. We also identified 42 ongoing and 23 completed studies lacking published results or relevant information on the study design. Hospitalised individuals with a confirmed or suspected diagnosis of symptomatic COVID-19 Systemic corticosteroids plus standard care versus standard care plus/minus placebo We included 11 RCTs (8019 participants), one of which did not report any of our pre-specified outcomes and thus our analyses included outcome data from 10 studies. Systemic corticosteroids plus standard care compared to standard care probably reduce all-cause mortality (up to 30 days) slightly (risk ratio (RR) 0.90, 95% confidence interval (CI) 0.84 to 0.97; 7898 participants; estimated absolute effect: 274 deaths per 1000 people not receiving systemic corticosteroids compared to 246 deaths per 1000 people receiving the intervention (95% CI 230 to 265 per 1000 people); moderate-certainty evidence). The evidence is very uncertain about the effect on all-cause mortality (up to 120 days) (RR 0.74, 95% CI 0.23 to 2.34; 485 participants). The chance of clinical improvement (discharged alive at day 28) may slightly increase (RR 1.07, 95% CI 1.03 to 1.11; 6786 participants; low-certainty evidence) while the risk of clinical worsening (new need for invasive mechanical ventilation or death) may slightly decrease (RR 0.92, 95% CI 0.84 to 1.01; 5586 participants; low-certainty evidence). For serious adverse events (two RCTs, 678 participants), adverse events (three RCTs, 447 participants), hospital-acquired infections (four RCTs, 598 participants), and invasive fungal infections (one study, 64 participants), we did not perform any analyses beyond the presentation of descriptive statistics due to very low-certainty evidence (high risk of bias, heterogeneous definitions, and underreporting). Different types, dosages or timing of systemic corticosteroids We identified one RCT (86 participants) comparing methylprednisolone to dexamethasone, thus the evidence is very uncertain about the effect of methylprednisolone on all-cause mortality (up to 30 days) (RR 0.51, 95% CI 0.24 to 1.07; 86 participants). None of the other outcomes of interest were reported in this study. We included four RCTs (1383 participants) comparing high-dose dexamethasone (12 mg or higher) to low-dose dexamethasone (6 mg to 8 mg). High-dose dexamethasone compared to low-dose dexamethasone may reduce all-cause mortality (up to 30 days) (RR 0.87, 95% CI 0.73 to 1.04; 1269 participants; low-certainty evidence), but the evidence is very uncertain about the effect of high-dose dexamethasone on all-cause mortality (up to 120 days) (RR 0.93, 95% CI 0.79 to 1.08; 1383 participants) and it may have little or no impact on clinical improvement (discharged alive at 28 days) (RR 0.98, 95% CI 0.89 to 1.09; 200 participants; low-certainty evidence). Studies did not report data on clinical worsening (new need for invasive mechanical ventilation or death). For serious adverse events, adverse events, hospital-acquired infections, and invasive fungal infections, we did not perform analyses beyond the presentation of descriptive statistics due to very low-certainty evidence. We could not identify studies for comparisons of different timing and systemic corticosteroids versus other active substances. Equity-related subgroup analyses We conducted the following subgroup analyses to explore equity-related factors: sex, age (< 70 years; ≥ 70 years), ethnicity (Black, Asian or other versus White versus unknown) and place of residence (high-income versus low- and middle-income countries). Except for age and ethnicity, no evidence for differences could be identified. For all-cause mortality up to 30 days, participants younger than 70 years seemed to benefit from systemic corticosteroids in comparison to those aged 70 years and older. The few participants from a Black, Asian, or other minority ethnic group showed a larger estimated effect than the many White participants. Outpatients with asymptomatic or mild disease There are no studies published in populations with asymptomatic infection or mild disease. AUTHORS' CONCLUSIONS: Systemic corticosteroids probably slightly reduce all-cause mortality up to 30 days in people hospitalised because of symptomatic COVID-19, while the evidence is very uncertain about the effect on all-cause mortality up to 120 days. For younger people (under 70 years of age) there was a potential advantage, as well as for Black, Asian, or people of a minority ethnic group; further subgroup analyses showed no relevant effects. Evidence related to the most effective type, dose, or timing of systemic corticosteroids remains immature. Currently, there is no evidence on asymptomatic or mild disease (non-hospitalised participants). Due to the low to very low certainty of the current evidence, we cannot assess safety adequately to rule out harmful effects of the treatment, therefore there is an urgent need for good-quality safety data. Findings of equity-related subgroup analyses should be interpreted with caution because of their explorative nature, low precision, and missing data. We identified 42 ongoing and 23 completed studies lacking published results or relevant information on the study design, suggesting there may be possible changes of the effect estimates and certainty of the evidence in the future.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções Fúngicas Invasivas , Humanos , Idoso , Idoso de 80 Anos ou mais , Corticosteroides/efeitos adversos , Metilprednisolona , Dexametasona/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome de COVID-19 Pós-Aguda
17.
Cochrane Database Syst Rev ; 6: CD015209, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695334

RESUMO

BACKGROUND: With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES: To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA: We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS: We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS: We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS: In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).


Assuntos
Tratamento Farmacológico da COVID-19 , Coinfecção , Inibidores de Janus Quinases , Antivirais/uso terapêutico , Humanos , Inibidores de Janus Quinases/uso terapêutico , Oxigênio , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Estados Unidos
18.
Cochrane Database Syst Rev ; 6: CD014945, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713300

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab.   Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Adulto , Idoso , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Humanos , Pessoa de Meia-Idade , SARS-CoV-2
19.
Cochrane Database Syst Rev ; 8: CD015021, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943061

RESUMO

BACKGROUND: High efficacy in terms of protection from severe COVID-19 has been demonstrated for several SARS-CoV-2 vaccines. However, patients with compromised immune status develop a weaker and less stable immune response to vaccination. Strong immune response may not always translate into clinical benefit, therefore it is important to synthesise evidence on modified schemes and types of vaccination in these population subgroups for guiding health decisions. As the literature on COVID-19 vaccines continues to expand, we aimed to scope the literature on multiple subgroups to subsequently decide on the most relevant research questions to be answered by systematic reviews. OBJECTIVES: To provide an overview of the availability of existing literature on immune response and long-term clinical outcomes after COVID-19 vaccination, and to map this evidence according to the examined populations, specific vaccines, immunity parameters, and their way of determining relevant long-term outcomes and the availability of mapping between immune reactivity and relevant outcomes. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, the Web of Science Core Collection, and the World Health Organization COVID-19 Global literature on coronavirus disease on 6 December 2021.  SELECTION CRITERIA: We included studies that published results on immunity outcomes after vaccination with BNT162b2, mRNA-1273, AZD1222, Ad26.COV2.S, Sputnik V or Sputnik Light, BBIBP-CorV, or CoronaVac on predefined vulnerable subgroups such as people with malignancies, transplant recipients, people undergoing renal replacement therapy, and people with immune disorders, as well as pregnant and breastfeeding women, and children. We included studies if they had at least 100 participants (not considering healthy control groups); we excluded case studies and case series. DATA COLLECTION AND ANALYSIS: We extracted data independently and in duplicate onto an online data extraction form. Data were represented as tables and as online maps to show the frequency of studies for each item. We mapped the data according to study design, country of participant origin, patient comorbidity subgroup, intervention, outcome domains (clinical, safety, immunogenicity), and outcomes.  MAIN RESULTS: Out of 25,452 identified records, 318 studies with a total of more than 5 million participants met our eligibility criteria and were included in the review. Participants were recruited mainly from high-income countries between January 2020 and 31 October 2021 (282/318); the majority of studies included adult participants (297/318).  Haematological malignancies were the most commonly examined comorbidity group (N = 54), followed by solid tumours (N = 47), dialysis (N = 48), kidney transplant (N = 43), and rheumatic diseases (N = 28, 17, and 15 for mixed diseases, multiple sclerosis, and inflammatory bowel disease, respectively). Thirty-one studies included pregnant or breastfeeding women. The most commonly administered vaccine was BNT162b2 (N = 283), followed by mRNA-1273 (N = 153), AZD1222 (N = 66), Ad26.COV2.S (N = 42), BBIBP-CorV (N = 15), CoronaVac (N = 14), and Sputnik V (N = 5; no studies were identified for Sputnik Light). Most studies reported outcomes after regular vaccination scheme.  The majority of studies focused on immunogenicity outcomes, especially seroconversion based on binding antibody measurements and immunoglobulin G (IgG) titres (N = 179 and 175, respectively). Adverse events and serious adverse events were reported in 126 and 54 studies, whilst SARS-CoV-2 infection irrespective of severity was reported in 80 studies. Mortality due to SARS-CoV-2 infection was reported in 36 studies. Please refer to our evidence gap maps for more detailed information. AUTHORS' CONCLUSIONS: Up to 6 December 2021, the majority of studies examined data on mRNA vaccines administered as standard vaccination schemes (two doses approximately four to eight weeks apart) that report on immunogenicity parameters or adverse events. Clinical outcomes were less commonly reported, and if so, were often reported as a secondary outcome observed in seroconversion or immunoglobulin titre studies. As informed by this scoping review, two effectiveness reviews (on haematological malignancies and kidney transplant recipients) are currently being conducted.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Ad26COVS1 , Adulto , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Criança , Feminino , Humanos , Gravidez , SARS-CoV-2 , Vacinação
20.
Int J Med Microbiol ; 311(2): 151478, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33581548

RESUMO

BACKGROUND: Rothia sp. are Gram-positive bacteria in the class of Actinobacteria that are part of the physiological oral flora. In rare cases, Rothia aeria and Rothia dentocariosa can cause infective endocarditis (IE). The biofilm potential of Rothia in endocarditis is unknown. METHODS: Specimen from two cases of Rothia endocarditis were obtained during cardiac surgery. One of the patients suffered mitral valve IE from Rothia aeria. In the other case, IE of a prosthetic pulmonary valve was caused by Rothia dentocariosa. Fluorescence in situ hybridization (FISH) was used for visualization of microorganisms within heart valve tissues in combination with PCR and sequencing (FISHseq). RESULTS: The two heart valve specimens featured mature biofilms of bacteria that were identified by FISHseq as Rothia aeria and Rothia dentocariosa, respectively. FISH showed in situ biofilms of both microorganisms that feature distinct phenotypes for the first time ex vivo. Both of our reported cases were treated successfully by heart valve surgery and antibiotic therapy using beta-lactam antibiotics. CONCLUSION: The biofilm potential of Rothia sp. must be taken into account. The awareness of Rothia aeria and Rothia dentocariosa as rare but relevant pathogens for infective endocarditis must be raised. Use of biofilm-effective antibiotics in Rothia IE should be discussed.


Assuntos
Biofilmes , Endocardite Bacteriana/microbiologia , Micrococcaceae/patogenicidade , Humanos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA