Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tree Physiol ; 28(7): 1111-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18450575

RESUMO

Relationships between advance regeneration of four tree species (red maple (Acer rubrum L.), white oak (Quercus alba L.), chestnut oak (Q. montana Willd.) and northern red oak (Q. rubra L.)) and biotic (non-tree vegetation and canopy composition) and abiotic (soil series and topographic variables) factors were investigated in 52, mature mixed-oak stands in the central Appalachians. Aggregate height was used as a composite measure of regeneration abundance. Analyses were carried out separately for two physiographic provinces. Associations with tree regeneration were found for all biotic and abiotic factors both in partial models and full models. Red maple was abundant on most of the sites, but high red maple abundance was commonly associated with wet north-facing slopes with little or no cover of mountain-laurel (Kalmia latifolia L.) and hay-scented fern (Dennstaedtia punctilobula (Michx.) Moore). Regeneration of the three oak species was greatly favored by the abundance of overstory trees of their own kind. White oak regeneration was most abundant on south-facing, gentle, lower slopes with soils in the Buchanan series. Chestnut oak regeneration was more common on south-facing, steep upper slopes with stony soils. There was a positive association between chestnut oak and huckleberry (Gaylussacia baccata (Wangh.) Koch) cover classes. Northern red oak was more abundant on north-facing wet sites with Hazleton soil, and was associated with low occurrence of mountain-laurel and hay-scented fern.


Assuntos
Acer/fisiologia , Ecossistema , Quercus/fisiologia , Regeneração/fisiologia , Geografia , Pennsylvania , Solo
2.
Tree Physiol ; 25(12): 1495-500, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16137935

RESUMO

Advance regeneration in 52 mature mixed-oak stands was analyzed and described. Red maple (Acer rubrum L.) was the most abundant species in the study area. Among oak (Quercus) species, northern red oak (Q. rubra L.) was the most abundant within the Allegheny Plateau physiographic province, whereas chestnut oak (Q. montana L.) was the most abundant within the Ridge and Valley physiographic province. Sixteen stands, for which data are available through the fourth growing season following harvest, were used to describe stand development. Cumulative height, a composite measure of size and density, was used to describe early stand development. Black gum (Nyssa sylvatica Marsh.) and black birch (Betula lenta L.) had dramatic increases in stand density and cumulative height after overstory removal. Cumulative height of northern red oak and chestnut oak showed a faster positive response to overstory removal than red maple. Oak retained its dominance in cumulative height for at least 4 years after harvest. Red maple nevertheless remained the most abundant tree species after overstory removal. Our results suggest that the principal advantage of red maple regeneration is its ability to accumulate in large numbers prior to harvest.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Quercus/fisiologia , Árvores/fisiologia , Acer/fisiologia , Região dos Apalaches , Betula/fisiologia , Densidade Demográfica
3.
Environ Pollut ; 158(8): 2627-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20537450

RESUMO

We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (g(wv)), foliar injury, and leaf nitrogen concentration (N(L)) to tropospheric ozone (O(3)) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, g(wv), foliar injury, and N(L) (P < 0.05) among O(3) treatments. Seedlings in AA showed the highest A and g(wv) due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, g(wv), N(L), and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, g(wv), and foliar injury to O(3). Both VPD and N(L) had a strong influence on leaf gas exchange. Foliar O(3)-induced injury appeared when cumulative O(3) uptake reached 8-12 mmol m(-2), depending on soil water availability. The mechanistic assessment of O(3)-induced injury is a valuable approach for a biologically relevant O(3) risk assessment for forest trees.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Folhas de Planta/efeitos dos fármacos , Prunus/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes Atmosféricos/metabolismo , Respiração Celular/efeitos dos fármacos , Monitoramento Ambiental , Nitrogênio/metabolismo , Ozônio/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Prunus/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA