Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Evol Biol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306450

RESUMO

Insular biodiversity hotspots of Southeast Asia are remarkable for their biodiverse faunas. With a marine larval phase lasting up to several months, the freshwater fish subfamily Sicydiinae has colonized most islands of these hotspots. However, Sicydiinae diversity is still poorly understood in Southeast Asia. With the objective to estimate intraspecific genetic diversity and infer past demography, we conducted the molecular inventory of Sicydiinae species in Sundaland and Wallacea using 652 bp of the mitochondrial cytochrome oxidase I gene, species delimitation methods and Bayesian Skyline plot reconstructions. In total, 24 Molecular Operational Taxonomic Units are delimited among the 603 sequences belonging to 27 species and five genera. Two cases of discordance between morphology and mitochondrial sequence are observed suggesting ongoing speciation and/or introgression in two genera. Multiple new occurrences are reported, either for a single biodiversity hotspot or both, some of which corresponding to observations of a few individuals far from the range distribution of their conspecifics. Among the ten species or species group whose intraspecific diversity was examined, high levels of genetic diversity and past population expansion are revealed by Tajima's D tests and Bayesian Skyline Plot reconstructions. Together these results indicate that long-distance dispersal is common and suggest that most endemic species originated through founder events followed by population expansion. Patterns of sexual dimorphism and males' coloration among diverging species pair seem to point to sexual selection as an important mechanism contributing to speciation in the Sicydiinae of Sundaland and Wallacea.

2.
Nucleic Acids Res ; 50(16): 9279-9293, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979944

RESUMO

Metagenomics and total RNA sequencing (total RNA-Seq) have the potential to improve the taxonomic identification of diverse microbial communities, which could allow for the incorporation of microbes into routine ecological assessments. However, these target-PCR-free techniques require more testing and optimization. In this study, we processed metagenomics and total RNA-Seq data from a commercially available microbial mock community using 672 data-processing workflows, identified the most accurate data-processing tools, and compared their microbial identification accuracy at equal and increasing sequencing depths. The accuracy of data-processing tools substantially varied among replicates. Total RNA-Seq was more accurate than metagenomics at equal sequencing depths and even at sequencing depths almost one order of magnitude lower than those of metagenomics. We show that while data-processing tools require further exploration, total RNA-Seq might be a favorable alternative to metagenomics for target-PCR-free taxonomic identifications of microbial communities and might enable a substantial reduction in sequencing costs while maintaining accuracy. This could be particularly an advantage for routine ecological assessments, which require cost-effective yet accurate methods, and might allow for the incorporation of microbes into ecological assessments.


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética
3.
BMC Genomics ; 23(1): 584, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962326

RESUMO

BACKGROUND: Mitochondrial genomes are the most sequenced genomes after bacterial and fungal genomic DNA. However, little information on mitogenomes is available for multiple metazoan taxa, such as Culicoides, a globally distributed, megadiverse genus containing 1,347 species. AIM:  Generating novel mitogenomic information from single Culicoides sonorensis and C. biguttatus specimens, comparing available mitogenome mapping and de novo assembly tools, and identifying the best performing strategy and tools for Culicoides species. RESULTS: We present two novel and fully annotated mitochondrial haplotypes for two Culicoides species, C. sonorensis and C. biguttatus. We also annotated or re-annotated the only available reference mitogenome for C. sonorensis and C. arakawae. All species present a high similarity in mitogenome organization. The general gene arrangement for all Culicoides species was identical to the ancestral insect mitochondrial genome. Only short spacers were found in C. sonorensis (up to 30 bp), contrary to C. biguttatus (up to 114 bp). The mitochondrial genes ATP8, NAD2, NAD6, and LSU rRNA exhibited the highest nucleotide diversity and pairwise interspecific p genetic distance, suggesting that these genes might be suitable and complementary molecular barcodes for Culicoides identification in addition to the commonly utilized COI gene. We observed performance differences between the compared mitogenome generation strategies. The mapping strategy outperformed the de novo assembly strategy, but mapping results were partially biased in the absence of species-specific reference mitogenome. Among the utilized tools, BWA performed best for C. sonorensis while SPAdes, MEGAHIT, and MitoZ were among the best for C. biguttatus. The best-performing mitogenome annotator was MITOS2. Additionally, we were able to recover exogenous mitochondrial DNA from Bos taurus (biting midges host) from a C. biguttatus blood meal sample. CONCLUSIONS: Two novel annotated mitogenome haplotypes for C. sonorensis and C. biguttatus using High-Throughput Sequencing are presented. Current results are useful as the baseline for mitogenome reconstruction of the remaining Culicoides species from single specimens to HTS and genome annotation. Mapping to a species-specific reference mitogenome generated better results for Culicoides mitochondrial genome reconstruction than de novo assembly, while de novo assembly resulted better in the absence of a closely related reference mitogenome. These results have direct implications for molecular-based identification of these vectors of human and zoonotic diseases, setting the basis for using the whole mitochondrial genome as a marker in Culicoides identification.


Assuntos
Ceratopogonidae , Genoma Mitocondrial , Animais , Benchmarking , Bovinos , Ceratopogonidae/genética , Genes Mitocondriais , Genoma Mitocondrial/genética , Humanos , Insetos Vetores/genética
4.
PLoS Biol ; 15(4): e2001829, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28437475

RESUMO

The School Malaise Trap Program (SMTP) provides a technologically sophisticated and scientifically relevant educational experience that exposes students to the diversity of life, enhancing their understanding of biodiversity while promoting environmental stewardship. Since 2013, the SMTP has allowed 15,000 students at 350 primary and secondary schools to explore insect diversity in Canadian schoolyards. Students at each school collected hundreds of insects for an analysis of DNA sequence variation that enabled their rapid identification to a species. Through this hands-on approach, they participated in a learning exercise that conveys a real sense of scientific discovery. As well, the students contributed valuable data to the largest biodiversity genomics initiative ever undertaken: the International Barcode of Life project. To date, the SMTP has sequenced over 80,000 insect specimens, which includes representatives of 7,990 different species, nearly a tenth of the Canadian fauna. Both surprisingly and importantly, the collections generated the first DNA barcode records for 1,288 Canadian species.


Assuntos
Biodiversidade , Relações Comunidade-Instituição , Genômica/educação , Insetos/genética , Instituições Acadêmicas , Adolescente , Animais , Canadá , Criança , Relações Comunidade-Instituição/tendências , Código de Barras de DNA Taxonômico/veterinária , Genômica/tendências , Humanos , Insetos/classificação , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Instituições Acadêmicas/tendências , Ensino/tendências , Recursos Humanos
5.
Genome ; 59(11): 959-967, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27653340

RESUMO

The early life-history stages of fishes are poorly known, impeding acquisition of the identifications needed to monitor larval recruitment and year-class strength. A comprehensive database of COI sequences, linked to authoritatively identified voucher specimens, promises to change this situation, representing a significant advance for fisheries science. Barcode records were obtained from 2526 early larvae and pelagic eggs of fishes collected on the inshore shelf within 5 km of the KwaZulu-Natal coast, about 50 km south of Durban, South Africa. Barcodes were also obtained from 3215 adults, representing 946 South African fish species. Using the COI reference library on BOLD based on adults, 89% of the immature fishes could be identified to a species level; they represented 450 species. Most of the uncertain sequences could be assigned to a genus, family, or order; only 92 specimens (4%) were unassigned. Accumulation curves based on inference of phylogenetic diversity indicate near-completeness of the collecting effort. The entire set of adult and larval fishes included 1006 species, representing 43% of all fish species known from South African waters. However, this total included 189 species not previously recorded from this region. The fact that almost 90% of the immatures gained a species identification demonstrates the power and completeness of the DNA barcode reference library for fishes generated during the 10 years of FishBOL.


Assuntos
Código de Barras de DNA Taxonômico , Peixes/classificação , Peixes/genética , Animais , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Análise de Sequência de DNA , África do Sul
6.
Genome ; 58(12): 519-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642251

RESUMO

DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.


Assuntos
Código de Barras de DNA Taxonômico , Pesquisa em Genética , Saúde Global , Participação Social , Código de Barras de DNA Taxonômico/métodos , Bases de Dados Genéticas , Humanos , Metanálise como Assunto
8.
BMC Ecol ; 13: 40, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24164967

RESUMO

BACKGROUND: Coleoptera is the most diverse order of insects (>300,000 described species), but its richness diminishes at increasing latitudes (e.g., ca. 7400 species recorded in Canada), particularly of phytophagous and detritivorous species. However, incomplete sampling of northern habitats and a lack of taxonomic study of some families limits our understanding of biodiversity patterns in the Coleoptera. We conducted an intensive biodiversity survey from 2006-2010 at Churchill, Manitoba, Canada in order to quantify beetle species diversity in this model region, and to prepare a barcode library of beetles for sub-arctic biodiversity and ecological research. We employed DNA barcoding to provide estimates of provisional species diversity, including for families currently lacking taxonomic expertise, and to examine the guild structure, habitat distribution, and biogeography of beetles in the Churchill region. RESULTS: We obtained DNA barcodes from 3203 specimens representing 302 species or provisional species (the latter quantitatively defined on the basis of Molecular Operational Taxonomic Units, MOTUs) in 31 families of Coleoptera. Of the 184 taxa identified to the level of a Linnaean species name, 170 (92.4%) corresponded to a single MOTU, four (2.2%) represented closely related sibling species pairs within a single MOTU, and ten (5.4%) were divided into two or more MOTUs suggestive of cryptic species. The most diverse families were the Dytiscidae (63 spp.), Staphylinidae (54 spp.), and Carabidae (52 spp.), although the accumulation curve for Staphylinidae suggests that considerable additional diversity remains to be sampled in this family. Most of the species present are predatory, with phytophagous, mycophagous, and saprophagous guilds being represented by fewer species. Most named species of Carabidae and Dytiscidae showed a significant bias toward open habitats (wet or dry). Forest habitats, particularly dry boreal forest, although limited in extent in the region, were undersampled. CONCLUSIONS: We present an updated species list for this region as well as a species-level DNA barcode reference library. This resource will facilitate future work, such as biomonitoring and the study of the ecology and distribution of larvae.


Assuntos
Biodiversidade , Besouros/classificação , Código de Barras de DNA Taxonômico , Filogenia , Animais , Regiões Árticas , Besouros/genética , Biblioteca Gênica , Larva , Manitoba
9.
Front Microbiol ; 14: 1217750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075934

RESUMO

Introduction: Microbes are increasingly (re)considered for environmental assessments because they are powerful indicators for the health of ecosystems. The complexity of microbial communities necessitates powerful novel tools to derive conclusions for environmental decision-makers, and machine learning is a promising option in that context. While amplicon sequencing is typically applied to assess microbial communities, metagenomics and total RNA sequencing (herein summarized as omics-based methods) can provide a more holistic picture of microbial biodiversity at sufficient sequencing depths. Despite this advantage, amplicon sequencing and omics-based methods have not yet been compared for taxonomy-based environmental assessments with machine learning. Methods: In this study, we applied 16S and ITS-2 sequencing, metagenomics, and total RNA sequencing to samples from a stream mesocosm experiment that investigated the impacts of two aquatic stressors, insecticide and increased fine sediment deposition, on stream biodiversity. We processed the data using similarity clustering and denoising (only applicable to amplicon sequencing) as well as multiple taxonomic levels, data types, feature selection, and machine learning algorithms and evaluated the stressor prediction performance of each generated model for a total of 1,536 evaluated combinations of taxonomic datasets and data-processing methods. Results: Sequencing and data-processing methods had a substantial impact on stressor prediction. While omics-based methods detected a higher diversity of taxa than amplicon sequencing, 16S sequencing outperformed all other sequencing methods in terms of stressor prediction based on the Matthews Correlation Coefficient. However, even the highest observed performance for 16S sequencing was still only moderate. Omics-based methods performed poorly overall, but this was likely due to insufficient sequencing depth. Data types had no impact on performance while feature selection significantly improved performance for omics-based methods but not for amplicon sequencing. Discussion: We conclude that amplicon sequencing might be a better candidate for machine-learning-based environmental stressor prediction than omics-based methods, but the latter require further research at higher sequencing depths to confirm this conclusion. More sampling could improve stressor prediction performance, and while this was not possible in the context of our study, thousands of sampling sites are monitored for routine environmental assessments, providing an ideal framework to further refine the approach for possible implementation in environmental diagnostics.

10.
Mol Ecol ; 21(19): 4885-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22924838

RESUMO

The relationship between species diversity and environmental parameters is poorly understood for the mobile macrofauna of deep-sea habitats due to under-sampling and subsequent lack of accurate taxonomic information. To redress this, cytochrome oxidase c subunit I (COI) DNA sequences were used to estimate species diversity and to compare phoxocephalid amphipod assemblages among 20 stations encompassing a range of environmental conditions. Two regions, east (Chatham Rise) and west (Challenger Plateau) of New Zealand were sampled to depths of 200-1200 m with an epibenthic sled. Using a comparison among identified morphospecies, we found a clear gap in sequence divergences between 6% and 13% and used a 6% threshold to designate molecular operational taxonomic units (MOTUs), as a surrogate to putative species. DNA sequences (n = 297) revealed high total diversity (n = 49 MOTUs), as well as high beta diversity (28 MOTUs found at single location only). Novel phoxocephalid MOTUs were found at most stations, especially on Challenger Plateau and the flanks of Chatham Rise. Analyses of interstation assemblages revealed a major split between regions, indicating minimal overlap in taxon distributions. A cluster of highly similar stations was identified, broadly distributed over the crest of Chatham Rise, in association with elevated food availability, probably resulting from higher surface productivity and relatively shallow depth. Accordingly, multivariate analysis revealed a strong correlation between phoxocephalid assemblages and food supply. This study highlights the value of molecular approaches, in particular COI sequences, for quantifying and comparing diversity in under-sampled and/or under-studied taxa.


Assuntos
Anfípodes/genética , Biodiversidade , DNA Mitocondrial/genética , Variação Genética , Anfípodes/classificação , Animais , Dados de Sequência Molecular , Nova Zelândia , Oceanos e Mares , Análise de Sequência de DNA
13.
PeerJ ; 9: e11841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395083

RESUMO

Arthropod communities in buildings have not been extensively studied, although humans have always shared their homes with them. In this study we explored if arthropod DNA can be retrieved and metabarcoded from indoor environments through the collection of dead specimens in light fixtures to better understand what shapes arthropod diversity in our homes. Insects were collected from 45 light fixtures at the Centre for Biodiversity Genomics (CBG, Guelph, Canada), and by community scientists at 12 different residential homes in Southern Ontario. The CBG ground floor of the CBG showed the greatest arthropod diversity, especially in light fixtures that were continuously illuminated. The community scientist samples varied strongly by light fixture type, lightbulb used, time passed since lamp was last cleaned, and specimen size. In all cases, the majority of OTUs was not shared between samples even within the same building. This study demonstrates that light fixtures might be a useful resource to determine arthropod diversity in our homes, but individual samples are likely not representative of the full diversity.

14.
Life (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206388

RESUMO

Conservation and long-term management plans of marine species need to be based upon the universally recognized key-feature of species identity. This important assignment is particularly challenging in skates (Rajiformes) in which the phenotypic similarity between some taxa and the individual variability in others, hampers accurate species identification. Here, 432 individual skate samples collected from four major ocean areas of the Atlantic were barcoded and taxonomically analysed. A BOLD project ELASMO ATL was implemented with the aim of establishing a new fully available and well curated barcode library containing both biological and molecular information. The evolutionary histories of the 38 skate taxa were estimated with two concatenated mitochondrial markers (COI and NADH2) through Maximum Likelihood and Bayesian inference. New evolutionary lineages within the genus Raja were discovered off Angola, where paleogeographic history coupled with oceanographic discontinuities could have contributed to the establishment of isolated refugia, playing a fundamental role among skates' speciation events. These data successfully resolved many taxonomic ambiguities, identified cryptic diversity within valid species and demonstrated a highly cohesive monophyletic clustering among the order, laying the background for further inference of evolutionary patterns suitable for addressing management and conservation issues.

15.
Mol Ecol Resour ; 21(7): 2190-2203, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33905615

RESUMO

The effective use of metabarcoding in biodiversity science has brought important analytical challenges due to the need to generate accurate taxonomic assignments. The assignment of sequences to genus or species level is critical for biodiversity surveys and biomonitoring, but it is particularly challenging as researchers must select the approach that best recovers information on species composition. This study evaluates the performance and accuracy of seven methods in recovering the species composition of mock communities by using COI barcode fragments. The mock communities varied in species number and specimen abundance, while upstream molecular and bioinformatic variables were held constant, and using a set of COI fragments. We evaluated the impact of parameter optimization on the quality of the predictions. Our results indicate that BLAST top hit competes well with more complex approaches if optimized for the mock community under study. For example, the two machine learning methods that were benchmarked proved more sensitive to reference database heterogeneity and completeness than methods based on sequence similarity. The accuracy of assignments was impacted by both species and specimen counts (query compositional heterogeneity) which ultimately influence the selection of appropriate software. We urge researchers to: (i) use realistic mock communities to allow optimization of parameters, regardless of the taxonomic assignment method employed; (ii) carefully choose and curate the reference databases including completeness; and (iii) use QIIME, BLAST or LCA methods, in conjunction with parameter tuning to better assign taxonomy to diverse communities, especially when information on species diversity is lacking for the area under study.


Assuntos
Código de Barras de DNA Taxonômico , Eucariotos , Biodiversidade , Biologia Computacional , Software
16.
Mol Ecol Resour ; 21(7): 2369-2387, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33942522

RESUMO

Biodiversity knowledge is widely heterogeneous across the Earth's biomes. Some areas, due to their remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, these areas have frequently experienced a fast development of anthropogenic activities during the last decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have been much less explored biologically. Here, we describe the results of a DNA-based inventory of aquatic and terrestrial vertebrate communities, which was the objective of a multidisciplinary expedition to the Bird's Head Peninsula (West Papua, Indonesia) conducted between 17 October and 20 November 2014. This expedition resulted in the assembly of 1005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation methods (GMYC, PTP, RESL, ABGD), 264 molecular operational taxonomic units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. This study suggests that the diversity of vertebrates of the Bird's Head is severely underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas are discussed.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Animais , Aves/genética , DNA , Indonésia , Filogenia , Vertebrados/genética
17.
Ecol Evol ; 10(7): 3356-3366, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273993

RESUMO

The Coral Triangle (CT), a region spanning across Indonesia and Philippines, is home to about 4,350 marine fish species and is among the world's most emblematic regions in terms of conservation. Threatened by overfishing and oceans warming, the CT fisheries have faced drastic declines over the last decades. Usually monitored through a biomass-based approach, fisheries trends have rarely been characterized at the species level due to the high number of taxa involved and the difficulty to accurately and routinely identify individuals to the species level. Biomass, however, is a poor proxy of species richness, and automated methods of species identification are required to move beyond biomass-based approaches. Recent meta-analyses have demonstrated that species richness peaks at intermediary levels of biomass. Consequently, preserving biomass is not equal to preserving biodiversity. We present the results of a survey to estimate the shore fish diversity retailed at the harbor of Ambon Island, an island located at the center of the CT that display exceptionally high biomass despite high levels of threat, while building a DNA barcode reference library of CT shore fishes targeted by artisanal fisheries. We sampled 1,187 specimens and successfully barcoded 696 of the 760 selected specimens that represent 202 species. Our results show that DNA barcodes were effective in capturing species boundaries for 96% of the species examined, which opens new perspectives for the routine monitoring of the CT fisheries.

18.
Evol Appl ; 13(6): 1451-1467, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684969

RESUMO

DNA barcoding opens new perspectives on the way we document biodiversity. Initially proposed to circumvent the limits of morphological characters to assign unknown individuals to known species, DNA barcoding has been used in a wide array of studies where collecting species identity constitutes a crucial step. The assignment of unknowns to knowns assumes that species are already well identified and delineated, making the assignment performed reliable. Here, we used DNA-based species delimitation and specimen assignment methods iteratively to tackle the inventory of the Indo-Australian Archipelago grey mullets, a notorious case of taxonomic complexity that requires DNA-based identification methods considering that traditional morphological identifications are usually not repeatable and sequence mislabeling is common in international sequence repositories. We first revisited a DNA barcode reference library available at the global scale for Mugilidae through different DNA-based species delimitation methods to produce a robust consensus scheme of species delineation. We then used this curated library to assign unknown specimens collected throughout the Indo-Australian Archipelago to known species. A second iteration of OTU delimitation and specimen assignment was then performed. We show the benefits of using species delimitation and specimen assignment methods iteratively to improve the accuracy of specimen identification and propose a workflow to do so.

19.
Sci Rep ; 10(1): 2818, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071342

RESUMO

Sundaland constitutes one of the largest and most threatened biodiversity hotspots; however, our understanding of its biodiversity is afflicted by knowledge gaps in taxonomy and distribution patterns. The subfamily Rasborinae is the most diversified group of freshwater fishes in Sundaland. Uncertainties in their taxonomy and systematics have constrained its use as a model in evolutionary studies. Here, we established a DNA barcode reference library of the Rasborinae in Sundaland to examine species boundaries and range distributions through DNA-based species delimitation methods. A checklist of the Rasborinae of Sundaland was compiled based on online catalogs and used to estimate the taxonomic coverage of the present study. We generated a total of 991 DNA barcodes from 189 sampling sites in Sundaland. Together with 106 previously published sequences, we subsequently assembled a reference library of 1097 sequences that covers 65 taxa, including 61 of the 79 known Rasborinae species of Sundaland. Our library indicates that Rasborinae species are defined by distinct molecular lineages that are captured by species delimitation methods. A large overlap between intraspecific and interspecific genetic distance is observed that can be explained by the large amounts of cryptic diversity as evidenced by the 166 Operational Taxonomic Units detected. Implications for the evolutionary dynamics of species diversification are discussed.


Assuntos
Cipriniformes/classificação , Animais , Sudeste Asiático , Biodiversidade , Código de Barras de DNA Taxonômico , Água Doce , Filogenia
20.
J Mol Evol ; 69(3): 207-16, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19568804

RESUMO

The evolution of genome size as well as structure and organization of genomes belongs among the key questions of genome biology. Here we show, based on a comparative analysis of 30 genomes, that there is generally a tight correlation between the number of genes per chromosome and the length of the respective chromosome in eukaryotic genomes. The surprising exceptions to this pattern are placental mammalian genomes. We identify the number and, more importantly, the uneven distribution of gene deserts among chromosomes, i.e., long (>500 kb) stretches of DNA that do not encode for genes, as the main contributing factor for the observed anomaly of eutherian genomes. Gene-rich placental mammalian chromosomes have smaller proportions of gene deserts and vice versa. We show that the uneven distribution of gene deserts is a derived character state of eutherians. The functional and evolutionary significance of this particular feature of eutherian genomes remains to be explained.


Assuntos
Genes , Genoma/genética , Mamíferos/genética , Modelos Genéticos , Placenta/metabolismo , Animais , Cromossomos de Mamíferos/genética , Feminino , Humanos , Gravidez , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA