Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 110(11): 1759-1762, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32539638

RESUMO

Xylella fastidiosa is a xylem-limited bacterial plant pathogen that causes disease on numerous hosts. Additionally, X. fastidiosa asymptomatically colonizes a wide range of plant species. X. fastidiosa subsp. multiplex has been detected in olive (Olea europaea) trees grown in California, U.S.A., as well as in Europe. Strains of X. fastidiosa subsp. multiplex isolated from California olive trees are not known to cause disease on olive, although some can induce leaf-scorch symptoms on almond (Prunus dulcis). No genome assemblies currently exist for olive-associated X. fastidiosa subsp. multiplex strains; therefore, a hybrid assembly method was used to generate complete genome sequences for three X. fastidiosa subsp. multiplex strains (Fillmore, LM10, and RH1) isolated from olive trees grown in Ventura and Los Angeles counties of California.


Assuntos
Olea , Xylella , California , Europa (Continente) , Doenças das Plantas , Xylella/genética
2.
Plant Dis ; 104(11): 2994-3001, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32852243

RESUMO

Xylella fastidiosa is a vector-transmitted bacterial plant pathogen that affects a wide array of perennial crops, including grapevines (Pierce's disease). In the southern San Joaquin Valley of California, epidemics of Pierce's disease of grapevine were associated with the glassy-winged sharpshooter, Homalodisca vitripennis. During the growing season, rates of X. fastidiosa spread in vineyards are affected by changes in pathogen distribution within chronically infected grapevines and by vector population dynamics. Grapevines chronically infected with X. fastidiosa rarely tested positive for the pathogen prior to July, suggesting vector acquisition of X. fastidiosa from grapevines increases as the season progresses. This hypothesis was supported by an increase in number of X. fastidiosa-positive glassy-winged sharpshooters collected from vineyards during July through September. Analysis of insecticide records indicated that vineyards in the study area were typically treated with a systemic neonicotinoid in spring of each year. As a result, abundance of glassy-winged sharpshooters was typically low in late spring and early summer, with abundance of glassy-winged sharpshooter adults increasing in late June and early July of each year. Collectively, the results suggest that late summer is a crucial time for X. fastidiosa secondary spread in vineyards in the southern San Joaquin Valley, because glassy-winged sharpshooter abundance, number of glassy-winged sharpshooters testing positive for X. fastidiosa, and grapevines with detectable pathogen populations were all greatest during this period.


Assuntos
Xylella , Animais , California , Doenças das Plantas , Dinâmica Populacional
3.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028021

RESUMO

Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62 × 10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m = 2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.


Assuntos
Variação Genética , Genoma Bacteriano , Recombinação Homóloga , Xylella/genética , Filogenia
4.
J Gen Virol ; 98(3): 352-354, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28366187

RESUMO

The Potyviridae is the largest family of RNA plant viruses, members of which have single-stranded, positive-sense RNA genomes and flexuous filamentous particles 680-900 nm long and 11-20 nm wide. There are eight genera, distinguished by the host range, genomic features and phylogeny of the member viruses. Genomes range from 8.2 to 11.3 kb, with an average size of 9.7 kb. Most genomes are monopartite but those of members of the genus Bymovirus are bipartite. Some members cause serious disease epidemics in cultivated plants. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Potyviridae, which is available at www.ictv.global/report/potyviridae.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/classificação , Vírus de Plantas/genética , Potyviridae/classificação , Potyviridae/genética , Ordem dos Genes , Genoma Viral , Filogenia , Vírus de Plantas/fisiologia , Potyviridae/fisiologia , RNA Viral/genética , Replicação Viral
5.
Phytopathology ; 107(4): 388-394, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27938243

RESUMO

Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Doenças das Plantas/imunologia , Vitis/imunologia , Xylella/genética , Animais , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Óperon/genética , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , Virulência , Vitis/microbiologia , Xylella/crescimento & desenvolvimento , Xylella/patogenicidade , Xilema/microbiologia
6.
Mol Plant Microbe Interact ; 29(5): 335-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26808446

RESUMO

Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Virulência/metabolismo , Xylella/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Temperatura Baixa , Proteínas de Membrana , Dados de Sequência Molecular , Mutação , Proteínas de Saccharomyces cerevisiae , Estresse Fisiológico , Fatores de Virulência/genética , Vitis/microbiologia
7.
Phytopathology ; 106(8): 928-36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27088393

RESUMO

The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Vetores Genéticos , Plasmídeos , Xylella/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Transformação Bacteriana , Vitis/microbiologia
8.
J Econ Entomol ; 109(2): 487-501, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26637536

RESUMO

Models on the spread of insect-transmitted plant pathogens often fix vector population size by assuming that deaths are offset by births. Although such mathematical simplifications are often justified, deemphasizing parameters that govern vector population size is problematic, as reproductive biology and mortality schedules of vectors of plant pathogens receive little empirical attention. Here, the importance of explicitly including parameters for vector birth and death rates was evaluated by comparing results from models with fixed vector population size with models with logistic vector population growth. In fixed vector population size models, increasing vector mortality decreased percentage of inoculative vectors, but had no effect on vector population size, as deaths were offset by births. In models with logistic vector population growth, increasing vector mortality decreased percentage of inoculative vectors and decreased vector population size. Consequently, vector mortality had a greater effect on pathogen spread in models with logistic vector population growth than in models with fixed vector population size. Further, in models with logistic vector population growth, magnitude of vector birth rate determined time required for vector populations to reach large size, thereby determining when pathogen spread occurred quickly. Assumptions regarding timing of vector mortality within a time step also affected model outcome. A greater emphasis of vector entomologists on studying reproductive biology and mortality schedules of insect species that transmit plant pathogens will facilitate identification of conditions associated with rapid growth of vector populations and could lead to development of novel control strategies.


Assuntos
Insetos Vetores , Modelos Biológicos , Doenças das Plantas , Animais , Mortalidade , Densidade Demográfica , Dinâmica Populacional
9.
J Econ Entomol ; 108(3): 1014-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470224

RESUMO

The glassy-winged sharpshooter (Homalodisca vitripennis) is synovigenic and must feed as an adult to produce eggs. Egg maturation rates depend on the host plant species provided to the adult female for feeding and are variable for females provided with the same host plant species. Here, the contribution of female size and lipid content to variation in egg maturation rates among females held on the same host plant species was assessed. To assess effects of female size and lipid content on egg maturation, feeding assays followed by measurements of egg load, female size, and lipid content were conducted. To accomplish this, females were field collected and held on cowpea until producing approximately 0, 12, 25, or 50 ml of excreta. After reaching prescribed excreta thresholds, females were dissected to determine egg load, hind tibia length, and head capsule width. Mature eggs were removed from the abdomen and dry weight of eggs and bodies (head, thorax, and abdomen) were obtained. Lipid content of eggs and bodies were determined using a quantitative colorimetric assay. Rates of body weight gain and body lipid gain were rapid with low levels of feeding (12 ml of excreta) but decelerated with additional feeding (>12 ml of excreta). In contrast, low levels of feeding (12 ml of excreta) resulted in little egg production, with rates of egg production accelerating with additional feeding (>12 ml of excreta). Accordingly, egg production was preceded by an increase in body dry weight and body lipid content. In agreement, probability that a female carried eggs increased with body lipid content in the 0-, 12-, and 25-ml feeding treatments. Across treatments, larger females carried more eggs than smaller females. Collectively, results suggest that variation in glassy-winged sharpshooter egg maturation rates partially may be explained by availability of lipid reserves at the start of a feeding bout and female size.


Assuntos
Hemípteros/fisiologia , Animais , Tamanho Corporal , Comportamento Alimentar , Feminino , Hemípteros/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia
10.
Plant Dis ; 98(9): 1186-1193, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30699616

RESUMO

Olive (Olea europaea) trees exhibiting leaf scorch or branch dieback symptoms in California were surveyed for the xylem-limited, fastidious bacterium Xylella fastidiosa. Only approximately 17% of diseased trees tested positive for X. fastidiosa by polymerase chain reaction, and disease symptoms could not be attributed to X. fastidiosa infection of olive in greenhouse pathogenicity assays. Six strains of X. fastidiosa were isolated from olive in Southern California. Molecular assays identified strains recovered from olive as belonging to X. fastidiosa subsp. multiplex. Pathogenicity testing of olive strains on grapevine and almond confirmed that X. fastidiosa strains isolated from olive yield disease phenotypes on almond and grapevine typical of those expected for subsp. multiplex. Mechanical inoculation of X. fastidiosa olive strains to olive resulted in infection at low efficiency but infections remained asymptomatic and tended to be self-limiting. Vector transmission assays demonstrated that glassy-winged sharpshooter (Homalodisca vitripennis) could transmit strains of both subspp. multiplex and fastidiosa to olive at low efficiency. Insect trapping data indicated that two vectors of X. fastidiosa, glassy-winged sharpshooter and green sharpshooter (Draeculacephala minerva), were active in olive orchards. Collectively, the data indicate that X. fastidiosa did not cause olive leaf scorch or branch dieback but olive may contribute to the epidemiology of X. fastidiosa-elicited diseases in California. Olive may serve as an alternative, albeit suboptimal, host of X. fastidiosa. Olive also may be a refuge where sharpshooter vectors evade intensive areawide insecticide treatment of citrus, the primary control method used in California to limit glassy-winged sharpshooter populations and, indirectly, epidemics of Pierce's disease of grapevine.

11.
Phytopathology ; 103(2): 117-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23075167

RESUMO

Replacement of diseased plants with healthy plants is commonly used to manage spread of plant pathogens in perennial cropping systems. This strategy has two potential benefits. First, removing infected plants may slow pathogen spread by eliminating inoculum sources. Second, replacing infected plants with uninfected plants may offset yield losses due to disease. The extent to which these benefits are realized depends on multiple factors. In this study, sensitivity analyses of two spatially explicit simulation models were used to evaluate how assumptions concerning implementation of a plant replacement program and pathogen spread interact to affect disease suppression. In conjunction, effects of assumptions concerning yield loss associated with disease and rates of plant maturity on yields were simultaneously evaluated. The first model was used to evaluate effects of plant replacement on pathogen spread and yield on a single farm, consisting of a perennial crop monoculture. The second model evaluated effects of plant replacement on pathogen spread and yield in a 100 farm crop growing region, with all farms maintaining a monoculture of the same perennial crop. Results indicated that efficient replacement of infected plants combined with a high degree of compliance among farms effectively slowed pathogen spread, resulting in replacement of few plants and high yields. In contrast, inefficient replacement of infected plants or limited compliance among farms failed to slow pathogen spread, resulting in replacement of large numbers of plants (on farms practicing replacement) with little yield benefit. Replacement of infected plants always increased yields relative to simulations without plant replacement provided that infected plants produced no useable yield. However, if infected plants produced useable yields, inefficient removal of infected plants resulted in lower yields relative to simulations without plant replacement for perennial crops with long maturation periods in some cases.


Assuntos
Produtos Agrícolas/microbiologia , Modelos Biológicos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/estatística & dados numéricos , Agricultura/métodos , Biomassa , Simulação por Computador , Produtos Agrícolas/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia
13.
Phytopathology ; 102(1): 32-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21864087

RESUMO

Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK toxin-antitoxin (TA) system. PemK toxin inhibits bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK by direct binding. PemK and PemI were overexpressed in Escherichia coli and activities of each were assessed. Purified PemK toxin specifically degraded single-stranded RNA but not double-stranded RNA, double-stranded DNA, or single-stranded DNA. Addition of PemI antitoxin inhibited nuclease activity of PemK toxin. Purified complexes of PemI bound to PemK exhibited minimal nuclease activity; removal of PemI antitoxin from the complex restored nuclease activity of PemK toxin. Sequencing of 5' rapid amplification of cDNA ends products of RNA targets digested with PemK revealed a preference for cleavage between U and A residues of the sequence UACU and UACG. Nine single amino-acid substitution mutants of PemK toxin were constructed and evaluated for growth inhibition, ribonuclease activity, and PemI binding. Three PemK point-substitution mutants (R3A, G16E, and D79V) that lacked nuclease activity did not inhibit growth. All nine PemK mutants retained the ability to bind PemI. Collectively, the results indicate that the mechanism of stable inheritance conferred by pXF-RIV11 pemI/pemK is similar to that of the R100 pemI/pemK TA system of E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , RNA Bacteriano/metabolismo , Xylella/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sequência de Bases , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/isolamento & purificação , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutação , Plasmídeos , Mapeamento de Interação de Proteínas , RNA Bacteriano/genética , Proteínas Recombinantes de Fusão , Especificidade por Substrato , Xylella/genética
14.
Appl Environ Microbiol ; 77(7): 2522-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21296948

RESUMO

Incompatibility group P1 (IncP-1) plasmid diversity was evaluated based on replication initiator protein (TrfA) phylogeny. A new and highly divergent clade was identified. Replication assays indicated that TrfA of recently discovered IncP-1 plasmids from Xylella fastidiosa and Verminephrobacter eiseniae initiated plasmid replication using cognate or heterologous origins of replication.


Assuntos
Proteínas de Bactérias/genética , DNA Helicases/genética , Filogenia , Plasmídeos , Polimorfismo Genético , Transativadores/genética , Análise por Conglomerados , Comamonadaceae/genética , Xylella/genética
15.
Virology ; 562: 87-91, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280809

RESUMO

Vertical transmission of Homalodisca vitripennis reovirus (HoVRV) from glassy-winged sharpshooter (GWSS, Homalodisca vitripennis (Germar)) females to progeny occurred in laboratory assays at frequencies too low (2.6%-15.4%) to account for HoVRV incidence (90-100%) in field populations resident in citrus. Because citrus is immune to HoVRV and no plant host is known, horizontal transmission of HoVRV from insect-to-insect was evaluated. Exposure of colony-reared, virus-free test nymphs to HoVRV-infected source adults held in the same cage for 10 days on virus-immune cowpea resulted in HoVRV transmission (13.3%-30.7%) to test nymphs. HoVRV was not transmitted when exposure was indirect and required passive movement of virions through the xylem of immune citrus seedlings. Collectively, these results demonstrate direct insect-to-insect horizontal transmission of HoVRV, providing a plausible explanation for high incidence of HoVRV in GWSS field populations in the absence of efficient vertical transmission or a plant host.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Reoviridae/fisiologia , Animais , Citrus , Transmissão de Doença Infecciosa , Feminino , Ninfa/virologia , Vigna
16.
BMC Plant Biol ; 10: 135, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20591199

RESUMO

BACKGROUND: Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. RESULTS: Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. CONCLUSIONS: This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth, development and response to Xf infection.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Vitis/enzimologia , Vitis/microbiologia , Xylella/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma de Planta , Dados de Sequência Molecular , Poliadenilação , Splicing de RNA , Vitis/genética
17.
Appl Environ Microbiol ; 76(23): 7734-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935126

RESUMO

Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.


Assuntos
Replicação do DNA , Instabilidade Genômica , Plasmídeos , Xylella/genética , Agrobacterium tumefaciens/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos , Vetores Genéticos , Oligoquetos/microbiologia , Pseudomonas syringae/genética , Origem de Replicação , Xanthomonas campestris/genética , Xylella/isolamento & purificação
18.
Virus Res ; 284: 197987, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360867

RESUMO

Beginning in the 1960's, sowthistle yellow vein virus (SYVV) was the subject of pioneering research that demonstrated propagation of a plant virus in its insect vector. Since the 1980's there has been a paucity of research on SYVV, with historic isolates no longer maintained and no genomic sequence available. Once commonly observed infecting sowthistle (Sonchus oleraceous L.) in California, SYVV incidence declined ca. 1990, likely due to displacement of the black currant aphid (Hyperomyzus lactucae L.) by an invasive non-vector aphid. In 2018, SYVV was fortuitously rediscovered infecting sowthistle in an organic citrus grove in Kern County, CA. The SYVV genome sequence (13,719 nts) obtained from the 2018 sample (designated HWY65) encoded all six expected genes: N, P, MP, M, G, and L. Nucleotide sequence (representing ∼86 % of the genome) of the SYVV Berkeley lab isolate, used by E. S. Sylvester and colleagues for the paradigm-shifting research mentioned above, was determined from an archived library of cDNA clones constructed in 1986. The two nucleotide sequences share 98.5 % identity, confirming both represent the same virus, thereby linking biology of the historic isolate with extant SYVV rediscovered in 2018. Phylogenetic analysis of the L protein indicated SYVV is positioned within a clade containing a subset of viruses currently assigned to the genus Nucleorhabdovirus. As Nucleorhabdovirus is paraphyletic, the International Committee on the Taxonomy of Viruses has proposed abolishment of the genus and establishment of three new genera. In this revised taxonomy, the clade containing SYVV constitutes a new genus designated Betanucleorhabdovirus.


Assuntos
Genoma Viral , Genômica , Filogenia , Vírus de Plantas/genética , Rhabdoviridae/classificação , Rhabdoviridae/genética , Animais , Afídeos/virologia , Insetos Vetores/virologia
19.
Arch Virol ; 154(2): 331-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19132286

RESUMO

Wheat streak mosaic virus (WSMV) was first detected in Argentina in 2002. Comparison of 78 WSMV coat protein sequences revealed that three Argentine isolates were closely related to isolates from the American Pacific Northwest (APNW) and Australia. Complete sequences were determined for one Argentine isolate, four APNW isolates, and three additional isolates from other regions of the USA. Comparison of these eight new sequences with five previously sequenced isolates of WSMV confirmed close affinity of WSMV from Argentina with APNW isolates. Collectively, these results indicate concurrent establishment of the same WSMV lineage in both Argentina and Australia.


Assuntos
Potyviridae/classificação , Argentina , Austrália , Proteínas do Capsídeo/genética , Dados de Sequência Molecular , América do Norte , Filogenia , Potyviridae/genética , Potyviridae/isolamento & purificação
20.
ISME J ; 13(9): 2319-2333, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31110262

RESUMO

High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.


Assuntos
Evolução Molecular , Recombinação Homóloga , Xylella/classificação , Xylella/genética , Europa (Continente) , Variação Genética , Genótipo , Filogenia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Estados Unidos , Xylella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA