Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(32): e2318805121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083417

RESUMO

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Cadeias de Markov , Animais , Caenorhabditis elegans/fisiologia , Comportamento Animal/fisiologia , Modelos Biológicos , Movimento/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758099

RESUMO

Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee Apis mellifera L. We find that bees collectively create a scenting-mediated communication network by arranging in a specific spatial distribution where there is a characteristic distance between individuals and directional signaling away from the queen. To better understand such a flow-mediated directional communication strategy, we developed an agent-based model where bee agents obeying simple, local behavioral rules exist in a flow environment in which the chemical signals diffuse and decay. Our model serves as a guide to exploring how physical parameters affect the collective scenting behavior and shows that increased directional bias in scenting leads to a more efficient aggregation process that avoids local equilibrium configurations of isotropic (nondirectional and axisymmetric) communication, such as small bee clusters that persist throughout the simulation. Our results highlight an example of extended classical stigmergy: Rather than depositing static information in the environment, individual bees locally sense and globally manipulate the physical fields of chemical concentration and airflow.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Modelos Biológicos , Feromônios/química , Olfato/fisiologia , Animais , Feminino , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Comportamento de Nidação/fisiologia , Análise Espaço-Temporal
3.
Chaos ; 33(2): 023136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859220

RESUMO

Isolating slower dynamics from fast fluctuations has proven remarkably powerful, but how do we proceed from partial observations of dynamical systems for which we lack underlying equations? Here, we construct maximally predictive states by concatenating measurements in time, partitioning the resulting sequences using maximum entropy, and choosing the sequence length to maximize short-time predictive information. Transitions between these states yield a simple approximation of the transfer operator, which we use to reveal timescale separation and long-lived collective modes through the operator spectrum. Applicable to both deterministic and stochastic processes, we illustrate our approach through partial observations of the Lorenz system and the stochastic dynamics of a particle in a double-well potential. We use our transfer operator approach to provide a new estimator of the Kolmogorov-Sinai entropy, which we demonstrate in discrete and continuous-time systems, as well as the movement behavior of the nematode worm C. elegans.

4.
PLoS Comput Biol ; 17(4): e1008914, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33905413

RESUMO

An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.


Assuntos
Algoritmos , Caenorhabditis elegans/fisiologia , Simulação por Computador , Redes Neurais de Computação , Animais , Modelos Biológicos
5.
Proc Natl Acad Sci U S A ; 116(5): 1501-1510, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30655347

RESUMO

The dynamics of complex systems generally include high-dimensional, nonstationary, and nonlinear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties, we detail an approach based on local linear models within windows determined adaptively from data. While the dynamics within each window are simple, consisting of exponential decay, growth, and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a likelihood-based hierarchical clustering, and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode Caenorhabditis elegans, our approach identifies fine-grained behavioral states and model dynamics which fluctuate about an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. We analyze whole-brain imaging in C. elegans and show that global brain dynamics is damped away from the instability boundary by a decrease in oxygen concentration. We provide additional evidence for such near-critical dynamics from the analysis of electrocorticography in monkey and the imaging of a neural population from mouse visual cortex at single-cell resolution.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Análise por Conglomerados , Haplorrinos , Funções Verossimilhança , Modelos Lineares , Camundongos , Modelos Neurológicos , Oxigênio/metabolismo
6.
PLoS Comput Biol ; 13(9): e1005747, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957328

RESUMO

A deterministic population dynamics model involving birth and death for a two-species system, comprising a wild-type and more resistant species competing via logistic growth, is subjected to two distinct stress environments designed to mimic those that would typically be induced by temporal variation in the concentration of a drug (antibiotic or chemotherapeutic) as it permeates through the population and is progressively degraded. Different treatment regimes, involving single or periodical doses, are evaluated in terms of the minimal population size (a measure of the extinction probability), and the population composition (a measure of the selection pressure for resistance or tolerance during the treatment). We show that there exist timescales over which the low-stress regime is as effective as the high-stress regime, due to the competition between the two species. For multiple periodic treatments, competition can ensure that the minimal population size is attained during the first pulse when the high-stress regime is short, which implies that a single short pulse can be more effective than a more protracted regime. Our results suggest that when the duration of the high-stress environment is restricted, a treatment with one or multiple shorter pulses can produce better outcomes than a single long treatment. If ecological competition is to be exploited for treatments, it is crucial to determine these timescales, and estimate for the minimal population threshold that suffices for extinction. These parameters can be quantified by experiment.


Assuntos
Antibacterianos , Bactérias/efeitos dos fármacos , Infecções Bacterianas , Modelos Biológicos , Dinâmica Populacional , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Caenorhabditis elegans , Biologia Computacional , Ecologia
7.
Phys Rev Lett ; 116(25): 258102, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391755

RESUMO

To understand DNA elasticity at high forces (F>30 pN), its helical nature must be taken into account, as a coupling between twist and stretch. The prevailing model, the wormlike chain, was previously extended to include this twist-stretch coupling. Motivated by DNA's charged nature, and the known effects of ionic charges on its elasticity, we set out to systematically measure the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach, we show, using our new data set, that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation. DNA's persistence length and stretch modulus are, on the other hand, relatively insensitive to the applied range of ionic strengths.


Assuntos
DNA/química , Magnésio/química , Elasticidade , Conformação de Ácido Nucleico , Concentração Osmolar
8.
Proc Natl Acad Sci U S A ; 108 Suppl 3: 15565-71, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21383186

RESUMO

What fascinates us about animal behavior is its richness and complexity, but understanding behavior and its neural basis requires a simpler description. Traditionally, simplification has been imposed by training animals to engage in a limited set of behaviors, by hand scoring behaviors into discrete classes, or by limiting the sensory experience of the organism. An alternative is to ask whether we can search through the dynamics of natural behaviors to find explicit evidence that these behaviors are simpler than they might have been. We review two mathematical approaches to simplification, dimensionality reduction and the maximum entropy method, and we draw on examples from different levels of biological organization, from the crawling behavior of Caenorhabditis elegans to the control of smooth pursuit eye movements in primates, and from the coding of natural scenes by networks of neurons in the retina to the rules of English spelling. In each case, we argue that the explicit search for simplicity uncovers new and unexpected features of the biological system and that the evidence for simplification gives us a language with which to phrase new questions for the next generation of experiments. The fact that similar mathematical structures succeed in taming the complexity of very different biological systems hints that there is something more general to be discovered.


Assuntos
Comportamento/fisiologia , Neurônios/fisiologia , Animais , Entropia , Humanos , Modelos Neurológicos , Redução Dimensional com Múltiplos Fatores , Rede Nervosa/fisiologia
9.
Proc Natl Acad Sci U S A ; 108(18): 7286-9, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502536

RESUMO

Animal behaviors often are decomposable into discrete, stereotyped elements, well separated in time. In one model, such behaviors are triggered by specific commands; in the extreme case, the discreteness of behavior is traced to the discreteness of action potentials in the individual command neurons. Here, we use the crawling behavior of the nematode Caenorhabditis elegans to demonstrate the opposite view, in which discreteness, stereotypy, and long timescales emerge from the collective dynamics of the behavior itself. In previous work, we found that as C. elegans crawls, its body moves through a "shape space" in which four dimensions capture approximately 95% of the variance in body shape. Here we show that stochastic dynamics within this shape space predicts transitions between attractors corresponding to abrupt reversals in crawling direction. With no free parameters, our inferred stochastic dynamical system generates reversal timescales and stereotyped trajectories in close agreement with experimental observations. We use the stochastic dynamics to show that the noise amplitude decreases systematically with increasing time away from food, resulting in longer bouts of forward crawling and suggesting that worms can use noise to modify their locomotory behavior.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Comportamento Estereotipado/fisiologia , Animais , Microscopia de Vídeo , Fatores de Tempo
10.
J Neurophysiol ; 110(9): 2019-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926041

RESUMO

We use functional magnetic resonance imaging (fMRI) to analyze neural responses to natural auditory stimuli. We characterize the fMRI time series through the shape of the voxel power spectrum and find that the timescales of neural dynamics vary along a spatial gradient, with faster dynamics in early auditory cortex and slower dynamics in higher order brain regions. The timescale gradient is observed through the unsupervised clustering of the power spectra of individual brains, both in the presence and absence of a stimulus, and is enhanced in the stimulus-locked component that is shared across listeners. Moreover, intrinsically faster dynamics occur in areas that respond preferentially to momentary stimulus features, while the intrinsically slower dynamics occur in areas that integrate stimulus information over longer timescales. These observations connect the timescales of intrinsic neural dynamics to the timescales of information processing, suggesting a temporal organizing principle for neural computation across the cerebral cortex.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva , Mapeamento Encefálico , Adulto , Humanos , Imageamento por Ressonância Magnética , Percepção da Fala
11.
Phys Rev Lett ; 110(1): 018701, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383852

RESUMO

The scale invariance of natural images suggests an analogy to the statistical mechanics of physical systems at a critical point. Here we examine the distribution of pixels in small image patches and show how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging specific heat, which corresponds to large fluctuations in how "surprising" we find individual images, and in the quantitative form of the entropy vs energy. We identify special image configurations as local energy minima and show that average patches within each basin are interpretable as lines and edges in all orientations.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 107(32): 14425-30, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660768

RESUMO

Verbal communication is a joint activity; however, speech production and comprehension have primarily been analyzed as independent processes within the boundaries of individual brains. Here, we applied fMRI to record brain activity from both speakers and listeners during natural verbal communication. We used the speaker's spatiotemporal brain activity to model listeners' brain activity and found that the speaker's activity is spatially and temporally coupled with the listener's activity. This coupling vanishes when participants fail to communicate. Moreover, though on average the listener's brain activity mirrors the speaker's activity with a delay, we also find areas that exhibit predictive anticipatory responses. We connected the extent of neural coupling to a quantitative measure of story comprehension and find that the greater the anticipatory speaker-listener coupling, the greater the understanding. We argue that the observed alignment of production- and comprehension-based processes serves as a mechanism by which brains convey information.


Assuntos
Comunicação , Compreensão/fisiologia , Percepção da Fala/fisiologia , Adulto , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética , Adulto Jovem
13.
Front Behav Neurosci ; 16: 854486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685272

RESUMO

While stress reactions can emerge long after the triggering event, it remains elusive how they emerge after a protracted, seemingly stress-free period during which stress incubates. Here, we study the behavioral development in mice isolated after observing an aggressive encounter inflicted upon their pair-housed partners. We developed a spatially resolved fine-scale behavioral analysis and applied it to standard behavioral tests. It reveals that the seemingly sudden behavioral changes developed gradually. These behavioral changes were not observed if the aggressive encounter happened to a stranger mouse, suggesting that social bonding is a prerequisite for stress incubation in this paradigm. This finding was corroborated by hemisphere-specific morphological changes in cortex regions centering at the anterior cingulate cortex, a cognitive and emotional center. Our non-invasive analytical methods to capture informative behavioral details may have applications beyond laboratory animals.

14.
Nat Methods ; 5(10): 895-902, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18794862

RESUMO

We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or gamma-aminobutyric acid at Caenorhabditis elegans neuromuscular junctions using targeted expression of Chlamydomonas reinhardtii Channelrhodopsin-2. In intact Channelrhodopsin-2 transgenic worms, photostimulation instantly induced body elongation (for gamma-aminobutyric acid) or contraction (for acetylcholine), which we analyzed acutely, or during sustained activation with automated image analysis, to assess synaptic efficacy. In dissected worms, photostimulation evoked neurotransmitter-specific postsynaptic currents that could be triggered repeatedly and at various frequencies. Light-evoked behaviors and postsynaptic currents were significantly (P

Assuntos
Luz , Sinapses/fisiologia , Acetilcolina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Neurônios Motores/fisiologia , Contração Muscular , Relaxamento Muscular , Transmissão Sináptica , Ácido gama-Aminobutírico/fisiologia
15.
Nat Commun ; 12(1): 1733, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741938

RESUMO

From cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety of collective behaviors. Yet quantifying such phenomena first requires tracking a significant fraction of the group members in natural conditions, a substantial and ongoing challenge. We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of sociometric colony fluctuations. These fluctuations include ~24 h cycles in the counted detections, negative correlation between bee and brood, and nightly enhancement of bees inside comb cells. We combine detected positions with visual features of organism-centered images to track individuals over time and through challenging occluding events, recovering ~79% of bee trajectories from five observation hives over 5 min timespans. The trajectories reveal important individual behaviors, including waggle dances and crawling inside comb cells. Our results provide opportunities for the quantitative study of collective bee behavior and for advancing tracking techniques of crowded systems.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Animais , Biologia Computacional , Redes Neurais de Computação
16.
Nat Commun ; 11(1): 975, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080202

RESUMO

The reliable detection of environmental molecules in the presence of noise is an important cellular function, yet the underlying computational mechanisms are not well understood. We introduce a model of two interacting sensors which allows for the principled exploration of signal statistics, cooperation strategies and the role of energy consumption in optimal sensing, quantified through the mutual information between the signal and the sensors. Here we report that in general the optimal sensing strategy depends both on the noise level and the statistics of the signals. For joint, correlated signals, energy consuming (nonequilibrium), asymmetric couplings result in maximum information gain in the low-noise, high-signal-correlation limit. Surprisingly we also find that energy consumption is not always required for optimal sensing. We generalise our model to incorporate time integration of the sensor state by a population of readout molecules, and demonstrate that sensor interaction and energy consumption remain important for optimal sensing.


Assuntos
Técnicas Biossensoriais/métodos , Fenômenos Biofísicos , Técnicas Biossensoriais/estatística & dados numéricos , Bioestatística , Células/metabolismo , Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Modelos Biológicos , Transdução de Sinais , Razão Sinal-Ruído
17.
PLoS One ; 15(10): e0240802, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33091031

RESUMO

Time-lapse microscopy is routinely used to follow cells within organoids, allowing direct study of division and differentiation patterns. There is an increasing interest in cell tracking in organoids, which makes it possible to study their growth and homeostasis at the single-cell level. As tracking these cells by hand is prohibitively time consuming, automation using a computer program is required. Unfortunately, organoids have a high cell density and fast cell movement, which makes automated cell tracking difficult. In this work, a semi-automated cell tracker has been developed. To detect the nuclei, we use a machine learning approach based on a convolutional neural network. To form cell trajectories, we link detections at different time points together using a min-cost flow solver. The tracker raises warnings for situations with likely errors. Rapid changes in nucleus volume and position are reported for manual review, as well as cases where nuclei divide, appear and disappear. When the warning system is adjusted such that virtually error-free lineage trees can be obtained, still less than 2% of all detected nuclei positions are marked for manual analysis. This provides an enormous speed boost over manual cell tracking, while still providing tracking data of the same quality as manual tracking.


Assuntos
Algoritmos , Rastreamento de Células , Aprendizado de Máquina , Organoides/citologia , Automação , Humanos , Redes Neurais de Computação , Software
18.
PLoS Comput Biol ; 4(4): e1000028, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18389066

RESUMO

A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here, we show that the space of shapes adopted by the nematode Caenorhabditis elegans is low dimensional, with just four dimensions accounting for 95% of the shape variance. These dimensions provide a quantitative description of worm behavior, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Animais , Simulação por Computador
19.
J R Soc Interface ; 16(157): 20190174, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31455164

RESUMO

A quantitative understanding of organism-level behaviour requires predictive models that can capture the richness of behavioural phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here, we investigate the motile behaviour of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioural repertoire by measuring motile trajectories of the canonical laboratory strain Caenorhabditis elegans N2 as well as wild strains and distant species. We focus on trajectory dynamics over time scales spanning the transition from ballistic (straight) to diffusive (random) movement and find that salient features of the motility statistics are captured by a random walk model with independent dynamics in the speed, bearing and reversal events. We show that the model parameters vary among species in a correlated, low-dimensional manner suggestive of a common mode of behavioural control and a trade-off between exploration and exploitation. The distribution of phenotypes along this primary mode of variation reveals that not only the mean but also the variance varies considerably across strains, suggesting that these nematode lineages employ contrasting 'bet-hedging' strategies for foraging.


Assuntos
Comportamento Exploratório/fisiologia , Modelos Biológicos , Nematoides/fisiologia , Animais , Simulação por Computador , Atividade Motora , Nematoides/genética , Filogenia , Especificidade da Espécie
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(2 Pt 1): 021915, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17358375

RESUMO

We apply an information-theoretic treatment of action potential time series measured with microelectrode arrays to estimate the connectivity of mammalian neuronal cell assemblies grown in vitro. We infer connectivity between two neurons via the measurement of the mutual information between their spike trains. In addition we measure higher-point multi-information between any two spike trains, conditional on the activity of a third cell, as a means to identify and distinguish classes of functional connectivity among three neurons. The use of a conditional three-cell measure removes some interpretational shortcomings of the pairwise mutual information and sheds light on the functional connectivity arrangements of any three cells. We analyze the resultant connectivity graphs in light of other complex networks and demonstrate that, despite their ex vivo development, the connectivity maps derived from cultured neural assemblies are similar to other biological networks and display nontrivial structure in clustering coefficient, network diameter, and assortative mixing. Specifically we show that these networks are weakly disassortative small-world graphs, which differ significantly in their structure from randomized graphs with the same degree. We expect our analysis to be useful in identifying the computational motifs of a wide variety of complex networks, derived from time series data.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Simulação por Computador , Retroalimentação/fisiologia , Camundongos , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA