RESUMO
Phosphorylation of Inhibitor of κB (IκB) proteins by IκB Kinase ß (IKKß) leads to IκB degradation and subsequent activation of nuclear factor κB transcription factors. Of particular interest is the IKKß-catalyzed phosphorylation of IκBα residues Ser32 and Ser36 within a conserved destruction box motif. To investigate the catalytic mechanism of IKKß, we performed pre-steady-state kinetic analysis of the phosphorylation of IκBα protein substrates catalyzed by constitutively active, human IKKß. Phosphorylation of full-length IκBα catalyzed by IKKß was characterized by a fast exponential phase followed by a slower linear phase. The maximum observed rate (kp) of IKKß-catalyzed phosphorylation of IκBα was 0.32 s-1 and the binding affinity of ATP for the IKKßâ¢IκBα complex (Kd) was 12 µM. Substitution of either Ser32 or Ser36 with Ala, Asp, or Cys reduced the amplitude of the exponential phase by approximately 2-fold. Thus, the exponential phase was attributed to phosphorylation of IκBα at Ser32 and Ser36, whereas the slower linear phase was attributed to phosphorylation of other residues. Interestingly, the exponential rate of phosphorylation of the IκBα(S32D) phosphomimetic amino acid substitution mutant was nearly twice that of WT IκBα and 4-fold faster than any of the other IκBα amino acid substitution mutants, suggesting that phosphorylation of Ser32 increases the phosphorylation rate of Ser36. These conclusions were supported by parallel experiments using GST-IκBα(1-54) fusion protein substrates bearing the first 54 residues of IκBα. Our data suggest a model wherein, IKKß phosphorylates IκBα at Ser32 followed by Ser36 within a single binding event.
Assuntos
Quinase I-kappa B , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Cinética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.
Assuntos
Sistemas CRISPR-Cas , DNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Clivagem do DNA , Cinética , Streptococcus pyogenes/metabolismoRESUMO
Interest in CRISPR/Cas9 remains high level as new applications of the revolutionary gene-editing tool continue to emerge. While key structural and biochemical findings have illuminated major steps in the enzymatic mechanism of Cas9, several important details remain unidentified or poorly characterized that may contribute to known functional limitations. Here we describe the foundation of research that has led to a fundamental understanding of Cas9 and address mechanistic uncertainties that restrict continued development of this gene-editing platform, including specificity for the protospacer adjacent motif, propensity for off-target binding and cleavage, as well as interactions with cellular components during gene editing. Discussion of these topics and considerations should inspire future research to hone this remarkable technology and advance CRISPR/Cas9 to new heights.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Pesquisa/tendências , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , HumanosRESUMO
Since the initial characterization of Streptococcus pyogenes CRISPR/Cas9 as a powerful gene-editing tool, it has been widely accepted that Cas9 generates blunt-ended DNA products by concerted cleavage of the target (tDNA) and non-target (ntDNA) strands three nucleotides away from the protospacer adjacent motif (PAM) by HNH and RuvC nuclease active sites, respectively. Following initial DNA cleavage, RuvC catalyzes 3'â5' degradation of the ntDNA resulting in DNA products of various lengths. Here, we found that Cas9 selects multiple sites for initial ntDNA cleavage and preferentially generates staggered-ended DNA products containing single-nucleotide 5'-overhangs. We also quantitatively evaluated 3'â5' post-cleavage trimming (PCT) activity of RuvC to find that ntDNA degradation continues up to the -10 position on the PAM distal DNA product and is kinetically significant when compared to extremely slow DNA product release. We also discovered a previously unidentified 5'â3' PCT activity of RuvC which can shorten the PAM proximal ntDNA product by precisely one nucleotide with a comparable rate as the 3'â5' PCT activity. Taken together, our results demonstrate that RuvC-catalyzed PCT ultimately generates DNA fragments with heterogeneous ends following initial DNA cleavage including a PAM proximal fragment with a blunt end and a PAM distal fragment with a staggered-end, 3'-recessed on the ntDNA strand. These kinetic and biochemical findings underline the importance of temporal control of Cas9 during gene-editing experiments and help explain the patterns of nucleotide insertions at sites of Cas9-catalyzed gene modification in vivo.
Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Edição de Genes , Streptococcus pyogenes/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , DNA/genética , DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/metabolismoRESUMO
Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.
Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , Animais , Catálise , Linhagem Celular , Núcleo Celular/enzimologia , Clonagem Molecular , DNA Polimerase beta/química , DNA Polimerase beta/genética , Humanos , CamundongosRESUMO
Although severe coronavirus disease 2019 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. In addition, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 ("vax-plasma"). Thus, we report the clinical outcome of 386 immunocompromised outpatients who were diagnosed with COVID-19 and who received contemporary COVID-19-specific therapeutics (standard-of-care group) and a subgroup who also received concomitant treatment with very high titer COVID-19 convalescent plasma (vax-plasma group) with a specific focus on hospitalization rates. The overall hospitalization rate was 2.2% (5 of 225 patients) in the vax-plasma group and 6.2% (10 of 161 patients) in the standard-of-care group, which corresponded to a relative risk reduction of 65% (P = 0.046). Evidence of efficacy in nonvaccinated patients cannot be inferred from these data because 94% (361 of 386 patients) of patients were vaccinated. In vaccinated patients with immunosuppression and COVID-19, the addition of vax-plasma or very high titer COVID-19 convalescent plasma to COVID-19-specific therapies reduced the risk of disease progression leading to hospitalization.IMPORTANCEAs SARS-CoV-2 evolves, new variants of concern (VOCs) have emerged that evade available anti-spike monoclonal antibodies, particularly among immunosuppressed patients. However, high-titer COVID-19 convalescent plasma continues to be effective against VOCs because of its broad-spectrum immunomodulatory properties. Thus, we report clinical outcomes of 386 immunocompromised outpatients who were treated with COVID-19-specific therapeutics and a subgroup also treated with vaccine-boosted convalescent plasma. We found that the administration of vaccine-boosted convalescent plasma was associated with a significantly decreased incidence of hospitalization among immunocompromised COVID-19 outpatients. Our data add to the contemporary data providing evidence to support the clinical utility of high-titer convalescent plasma as antibody replacement therapy in immunocompromised patients.
Assuntos
Soroterapia para COVID-19 , Vacinas contra COVID-19 , COVID-19 , Hospitalização , Imunização Passiva , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/terapia , COVID-19/prevenção & controle , Imunização Passiva/métodos , Feminino , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Idoso , Hospitalização/estatística & dados numéricos , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Terapia de Imunossupressão , Pacientes Ambulatoriais , Resultado do TratamentoRESUMO
Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.
RESUMO
Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by loss of dystrophin protein, encoded by the DMD gene. DMD manifests early in childhood as difficulty walking, progresses to loss of ambulation by the teens, and leads to death in early adulthood. Adeno-associated virus-vectorized gene therapies to restore dystrophin protein expression using gene replacement or antisense oligonucleotide-mediated pre-mRNA splicing modulation have emerged, making great strides in uncovering barriers to gene therapies for DMD and other genetic diseases. While this first-generation of DMD therapies are being evaluated in ongoing clinical trials, uncertainties regarding durability and therapeutic efficacy prompted the development of new experimental therapies for DMD that take advantage of somatic cell gene editing. These experimental therapies continue to advance toward clinic trials, but questions remain unanswered regarding safety and translatable efficacy. Here we review the advancements toward treatment of DMD using gene editing and modulation therapies, with an emphasis on those nearest to clinical applications.
Assuntos
Distrofia Muscular de Duchenne , Adolescente , Adulto , Distrofina/genética , Éxons , Edição de Genes , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos AntissensoRESUMO
Many successful anti-viral and anti-cancer drugs are nucleoside analogs, which disrupt RNA and/or DNA synthesis. Here, we present liver-specific prodrugs of the chemotherapy drug gemcitabine (2',2'-difluorodeoxycytidine) for the treatment of hepatitis C virus (HCV) infection and hepatocellular carcinoma. The prodrugs were synthesized by introducing aromatic functional moieties to the cytosine 4-NH2 group of gemcitabine via amide bonds. The chemical modification was designed to i) enable passive diffusion across cellular membrane, ii) protect the prodrugs from inactivating deamination by cellular enzymes, and iii) allow release of active gemcitabine after amide hydrolysis by high levels of carboxylesterases in the liver. We found that many of our prodrugs exhibited similar toxicity as gemcitabine toward liver- and kidney-derived cancer cell lines but were 24- to 620-fold less cytotoxic than gemcitabine in breast- and pancreas-derived cancer cells, respectively. The prodrugs also inhibited an HCV replicon with IC50 values ranging from 10 nM-1.7 µM. Moreover, many of the prodrugs had therapeutic index values of >10,000 and have synergetic effects when combined with other Food and Drug Administration-approved anti-HCV small molecule drugs. These characteristics support the development of gemcitabine prodrugs as liver-specific therapeutics.