Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859204

RESUMO

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Assuntos
Efeito Estufa/história , Temperatura , Clima Tropical , Animais , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Respiração Celular , Ecossistema , Sedimentos Geológicos/química , História Antiga , Atividades Humanas , Lipídeos/análise , Modelos Teóricos , Fotossíntese , Pólen , Reprodutibilidade dos Testes , Estações do Ano , Esporos/isolamento & purificação , Árvores/crescimento & desenvolvimento
2.
Proc Natl Acad Sci U S A ; 110(24): 9645-50, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23720311

RESUMO

The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.


Assuntos
Dióxido de Carbono/metabolismo , Clima , Temperatura Baixa , Efeito Estufa , Regiões Antárticas , Atmosfera , Dinoflagellida/crescimento & desenvolvimento , Fósseis , Geografia , Sedimentos Geológicos/química , Camada de Gelo , Biologia Marinha , Oceanos e Mares , Plâncton/crescimento & desenvolvimento , Tasmânia , Fatores de Tempo , Movimentos da Água
3.
Nature ; 460(7253): 376-9, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606146

RESUMO

Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.


Assuntos
Clima Frio , Diatomáceas/isolamento & purificação , Camada de Gelo/química , Camada de Gelo/microbiologia , Regiões Árticas , Diatomáceas/química , Diatomáceas/ultraestrutura , Fósseis , Sedimentos Geológicos/microbiologia , História Antiga , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oceanos e Mares , Análise de Componente Principal , Salinidade , Água do Mar/química , Dióxido de Silício/análise
4.
Science ; 340(6130): 341-4, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23599491

RESUMO

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Assuntos
Adaptação Fisiológica , Dinoflagellida/fisiologia , Ecossistema , Camada de Gelo , Oceanos e Mares , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Regiões Antárticas , Temperatura Baixa , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA