Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808181

RESUMO

The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images. The clinical performance of the camera was also demonstrated through breast cancer images acquired with varying injected doses of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and qualitatively compared with sample digital full-field mammography, magnetic resonance imaging (MRI), and whole-body (WB) PET images. Micro hotspot phantom sources were visualized down to 1.35 mm-diameter rods. Spatial resolution was calculated to be 2.3 ± 0.1 mm for the in-plane resolution and 6.8 ± 0.1 mm for the cross-plane resolution using maximum likelihood expectation maximization (MLEM) reconstruction. The system peak noise equivalent count rate was 17.8 kcps at a 18F-FDG concentration of 10.5 kBq/mL. System scatter fraction was 24%. The overall efficiency at the peak noise equivalent count rate was 5400 cps/MBq. The maximum axial sensitivity achieved was 3.5%, with an average system sensitivity of 2.4%. Selected results from clinical trials demonstrate capability of imaging lesions at the chest wall and identifying false-negative X-ray findings and false-positive MRI findings, even at up to a 10-fold dose reduction in comparison with standard 18F-FDG doses (i.e., at 37 MBq or 1 mCi). The evaluation of the organ-targeted Radialis PET Camera indicates that it is a promising technology for high-image-quality, low-dose PET imaging. High-efficiency radiotracer detection also opens an opportunity to reduce administered doses of radiopharmaceuticals and, therefore, patient exposure to radiation.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Imagens de Fantasmas , Padrões de Referência
2.
Front Oncol ; 14: 1268991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590664

RESUMO

Introduction: A newly developed clinical organ-targeted Positron Emission Tomography (PET) system (also known as Radialis PET) is tested with a set of standardized and custom tests previously used to evaluate the performance of Positron Emission Mammography (PEM) systems. Methods: Imaging characteristics impacting standardized uptake value (SUV) and detectability of small lesions, namely spatial resolution, linearity, uniformity, and recovery coefficients, are evaluated. Results: In-plane spatial resolution was measured as 2.3 mm ± 0.1 mm, spatial accuracy was 0.1 mm, and uniformity measured with flood field and NEMA NU-4 phantom was 11.7% and 8.3% respectively. Selected clinical images are provided as reference to the imaging capabilities under different clinical conditions such as reduced activity of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and time-delayed acquisitions. SUV measurements were performed for selected clinical acquisitions to demonstrate a capability for quantitative image assessment of different types of cancer including for invasive lobular carcinoma with comparatively low metabolic activity. Quantitative imaging performance assessment with phantoms demonstrates improved contrast recovery and spill-over ratio for this PET technology when compared to other commercial organ-dedicated PET systems with similar spatial resolution. Recovery coefficients were measured to be 0.21 for the 1 mm hot rod and up to 0.89 for the 5 mm hot rod of NEMA NU-4 Image Quality phantom. Discussion: Demonstrated ability to accurately reconstruct activity in tumors as small as 5 mm suggests that the Radialis PET technology may be well suited for emerging clinical applications such as image guided assessment of response to neoadjuvant systemic treatment (NST) in lesions smaller than 2 cm. Also, our results suggest that, while spatial resolution greatly influences the partial volume effect which degrades contrast recovery, optimized count rate performance and image reconstruction workflow may improve recovery coefficients for systems with comparable spatial resolution. We emphasize that recovery coefficient should be considered as a primary performance metric when a PET system is used for accurate lesion size or radiotracer uptake assessments.

3.
J Spec Oper Med ; 21(4): 54-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34969127

RESUMO

BACKGROUND: Advances in ultrasound technology with enhanced portability and high-quality imaging has led to a surge in its use on the battlefield by nonphysician providers. However, there is a consistent need for comprehensive and standardized ultrasound training to improve ultrasound knowledge, manual skills, and workflow understanding of nonphysician providers. MATERIALS AND METHODS: Our team designed a multimodal ultrasound course to improve ultrasound knowledge, manual skills, and workflow understanding of nine Special Operations combat medics and Special Operations tactical medics. The course was based on a flipped classroom model with a total time of 43 hours, consisting of an online component followed by live lectures and hands-on workshops. The effectiveness of the course was determined using a knowledge exam, expert ratings of manual skills using a global rating scale, and an objective structured clinical skills examination (OSCE). RESULTS: The average knowledge exam score of the medics increased from pre-course (56% ± 6.8%) to post-course (80% ± 5.0%, p < .001). Based on expert ratings, their manual skills improved from baseline to day 4 of the course for image finding (p = .007), image optimization (p = .008), image acquisition speed (p = .008), final image quality (p = .008), and global assessment (p = .008). Their average score at every OSCE station was > 91%. CONCLUSION: A comprehensive multimodal training program can be used to improve military medics' ultrasound knowledge, manual skills, and workflow understanding for various applications of ultrasound. Further research is required to develop a reliable, sustainable course.


Assuntos
Militares , Competência Clínica , Humanos , Inquéritos e Questionários , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA