Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant J ; 118(2): 388-404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150324

RESUMO

The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.


Assuntos
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologia
2.
Proc Natl Acad Sci U S A ; 119(16): e2201195119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412898

RESUMO

Most peptide hormones and growth factors are matured from larger inactive precursor proteins by proteolytic processing and further posttranslational modification. Whether or how posttranslational modifications contribute to peptide bioactivity is still largely unknown. We address this question here for TWS1 (Twisted Seed 1), a peptide regulator of embryonic cuticle formation in Arabidopsis thaliana. Using synthetic peptides encompassing the N- and C-terminal processing sites and the recombinant TWS1 precursor as substrates, we show that the precursor is cleaved by the subtilase SBT1.8 at both the N and the C termini of TWS1. Recognition and correct processing at the N-terminal site depended on sulfation of an adjacent tyrosine residue. Arginine 302 of SBT1.8 was found to be required for sulfotyrosine binding and for accurate processing of the TWS1 precursor. The data reveal a critical role for posttranslational modification, here tyrosine sulfation of a plant peptide hormone precursor, in mediating processing specificity and peptide maturation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hormônios Peptídicos , Processamento de Proteína Pós-Traducional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Tirosina/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(22): e2201446119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609199

RESUMO

The surface of pollen grains is reinforced by pollen wall components produced noncell autonomously by tapetum cells that surround developing pollen within the male floral organ, the anther. Here, we show that tapetum activity is regulated by the GASSHO (GSO) receptor-like kinase pathway, controlled by two sulfated peptides, CASPARIAN STRIP INTEGRITY FACTOR 3 (CIF3) and CIF4, the precursors of which are expressed in the tapetum itself. Coordination of tapetum activity with pollen grain development depends on the action of subtilases, including AtSBT5.4, which are produced stage specifically by developing pollen grains. Tapetum-derived CIF precursors are processed by subtilases, triggering GSO-dependent tapetum activation. We show that the GSO receptors act from the middle layer, a tissue surrounding the tapetum and developing pollen. Three concentrically organized cell types, therefore, cooperate to coordinate pollen wall deposition through a multilateral molecular dialogue.


Assuntos
Flores , Pólen , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Pólen/metabolismo
4.
Mol Cell Proteomics ; 18(8): 1526-1542, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31138643

RESUMO

Systemin is a small peptide with important functions in plant wound response signaling. Although the transcriptional responses of systemin action are well described, the signaling cascades involved in systemin perception and signal transduction at the protein level are poorly understood. Here we used a tomato cell suspension culture system to profile phosphoproteomic responses induced by systemin and its inactive Thr17Ala analog, allowing us to reconstruct a systemin-specific kinase/phosphatase signaling network. Our time-course analysis revealed early phosphorylation events at the plasma membrane, such as dephosphorylation of H+-ATPase, rapid phosphorylation of NADPH-oxidase and Ca2+-ATPase. Later responses involved transient phosphorylation of small GTPases, vesicle trafficking proteins and transcription factors. Based on a correlation analysis of systemin-induced phosphorylation profiles, we predicted substrate candidates for 44 early systemin-responsive kinases, which includes receptor kinases and downstream kinases such as MAP kinases, as well as nine phosphatases. We propose a regulatory module in which H+-ATPase LHA1 is rapidly de-phosphorylated at its C-terminal regulatory residue T955 by phosphatase PLL5, resulting in the alkalization of the growth medium within 2 mins of systemin treatment. We found the MAP kinase MPK2 to have increased phosphorylation level at its activating TEY-motif at 15 min post-treatment. The predicted interaction of MPK2 with LHA1 was confirmed by in vitro kinase assays, suggesting that the H+-ATPase LHA1 is re-activated by MPK2 later in the systemin response. Our data set provides a resource of proteomic events involved in systemin signaling that will be valuable for further in-depth functional studies in elucidation of systemin signaling cascades.


Assuntos
Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Solanum lycopersicum/metabolismo , Fosforilação , Proteoma , Transdução de Sinais
5.
Nat Chem Biol ; 14(2): 171-178, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29291349

RESUMO

Biosynthesis of the phytohormone jasmonoyl-isoleucine (JA-Ile) requires reduction of the JA precursor 12-oxo-phytodienoic acid (OPDA) by OPDA reductase 3 (OPR3). Previous analyses of the opr3-1 Arabidopsis mutant suggested an OPDA signaling role independent of JA-Ile and its receptor COI1; however, this hypothesis has been challenged because opr3-1 is a conditional allele not completely impaired in JA-Ile biosynthesis. To clarify the role of OPR3 and OPDA in JA-independent defenses, we isolated and characterized a loss-of-function opr3-3 allele. Strikingly, opr3-3 plants remained resistant to necrotrophic pathogens and insect feeding, and activated COI1-dependent JA-mediated gene expression. Analysis of OPDA derivatives identified 4,5-didehydro-JA in wounded wild-type and opr3-3 plants. OPR2 was found to reduce 4,5-didehydro-JA to JA, explaining the accumulation of JA-Ile and activation of JA-Ile-responses in opr3-3 mutants. Our results demonstrate that in the absence of OPR3, OPDA enters the ß-oxidation pathway to produce 4,5-ddh-JA as a direct precursor of JA and JA-Ile, thus identifying an OPR3-independent pathway for JA biosynthesis.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Resistência à Doença , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Doenças das Plantas/prevenção & controle , Alelos , Alternaria , Animais , Proteínas de Arabidopsis/metabolismo , Bioensaio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homozigoto , Insetos , Isoleucina/metabolismo , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
6.
J Biol Chem ; 292(15): 6389-6401, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223360

RESUMO

The propeptides of subtilisin-like serine proteinases (subtilases, SBTs) serve dual functions as intramolecular chaperones that are required for enzyme folding and as inhibitors of the mature proteases. SBT propeptides are homologous to the I9 family of protease inhibitors that have only been described in fungi. Here we report the identification and characterization of subtilisin propeptide-like inhibitor 1 (SPI-1) from Arabidopsis thaliana Sequence similarity and the shared ß-α-ß-ß-α-ß core structure identified SPI-1 as a member of the I9 inhibitor family and as the first independent I9 inhibitor in higher eukaryotes. SPI-1 was characterized as a high-affinity, tight-binding inhibitor of Arabidopsis subtilase SBT4.13 with Kd and Ki values in the picomolar range. SPI-1 acted as a stable inhibitor of SBT4.13 over the physiologically relevant range of pH, and its inhibitory profile included many other SBTs from plants but not bovine chymotrypsin or bacterial subtilisin A. Upon binding to SBT4.13, the C-terminal extension of SPI-1 was proteolytically cleaved. The last four amino acids at the newly formed C terminus of SPI-1 matched both the cleavage specificity of SBT4.13 and the consensus sequence of Arabidopsis SBTs at the junction of the propeptide with the catalytic domain. The data suggest that the C terminus of SPI-1 acts as a competitive inhibitor of target proteases as it remains bound to the active site in a product-like manner. SPI-1 thus resembles SBT propeptides with respect to its mode of protease inhibition. However, in contrast to SBT propeptides, SPI-1 could not substitute as a folding assistant for SBT4.13.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Arabidopsis/química , Inibidores de Serina Proteinase/química , Subtilisinas/antagonistas & inibidores , Subtilisinas/química , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bovinos , Estrutura Secundária de Proteína , Inibidores de Serina Proteinase/metabolismo , Subtilisinas/metabolismo
7.
New Phytol ; 218(3): 901-915, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28467631

RESUMO

Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.


Assuntos
Plantas/enzimologia , Subtilisinas/química , Subtilisinas/metabolismo , Morte Celular , Filogenia , Fenômenos Fisiológicos Vegetais
8.
New Phytol ; 218(3): 1167-1178, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28407256

RESUMO

Peptide hormones are implicated in many important aspects of plant life and are usually synthesized as precursor proteins. In contrast to animals, data for plant peptide hormone maturation are scarce and the specificity of processing enzyme(s) is largely unknown. Here we tested a hypothesis that processing of prosystemin, a precursor of tomato (Solanum lycopersicum) wound hormone systemin, is performed by phytaspases, aspartate-specific proteases of the subtilase family. Following the purification of phytaspase from tomato leaves, two tomato phytaspase genes were identified, the cDNAs were cloned and the recombinant enzymes were obtained after transient expression in Nicotiana benthamiana. The newly identified tomato phytaspases hydrolyzed prosystemin at two aspartate residues flanking the systemin sequence. Site-directed mutagenesis of the phytaspase cleavage sites in prosystemin abrogated not only the phytaspase-mediated processing of the prohormone in vitro, but also the ability of prosystemin to trigger the systemic wound response in vivo. The data show that the prohormone prosystemin requires processing for signal biogenesis and biological activity. The identification of phytaspases as the proteases involved in prosystemin maturation provides insight into the mechanisms of wound signaling in tomato. Our data also suggest a novel role for cell death-related proteases in mediating defense signaling in plants.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Solanum lycopersicum/metabolismo , Hidrólise , Transdução de Sinais
9.
Plant Physiol ; 171(2): 1456-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208293

RESUMO

In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato.


Assuntos
Metaloproteinases da Matriz/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/enzimologia , Biocatálise , Morte Celular , Clonagem Molecular , Eletroforese em Gel Bidimensional , Ensaio de Desvio de Mobilidade Eletroforética , Hipocótilo/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Proteoma/metabolismo , Proteômica , Interferência de RNA , Frações Subcelulares/enzimologia , Especificidade por Substrato
10.
J Exp Bot ; 67(14): 4325-38, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259555

RESUMO

Subtilisin-like proteases (SBTs) constitute a large family of extracellular plant proteases, the function of which is still largely unknown. In tomato plants, the expression of SBT3 was found to be induced in response to wounding and insect attack in injured leaves but not in healthy systemic tissues. The time course of SBT3 induction resembled that of proteinase inhibitor II and other late wound response genes suggesting a role for SBT3 in herbivore defense. Consistent with such a role, larvae of the specialist herbivore Manduca sexta performed better on transgenic plants silenced for SBT3 expression (SBT3-SI). Supporting a contribution of SBT3 to systemic wound signaling, systemic induction of late wound response genes was attenuated in SBT3-SI plants. The partial loss of insect resistance may thus be explained by a reduction in systemic defense gene expression. Alternatively, SBT3 may play a post-ingestive role in plant defense. Similar to other anti-nutritive proteins, SBT3 was found to be stable and active in the insect's digestive system, where it may act on unidentified proteins of insect or plant origin. Finally, a reduction in the level of pectin methylesterification that was observed in transgenic plants with altered levels of SBT3 expression suggested an involvement of SBT3 in the regulation of pectin methylesterases (PMEs). While such a role has been described in other systems, PME activity and the degree of pectin methylesterification did not correlate with the level of insect resistance in SBT3-SI and SBT3 overexpressing plants and are thus unrelated to the observed resistance phenotype.


Assuntos
Proteínas de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Subtilisinas/fisiologia , Animais , Herbivoria , Solanum lycopersicum/enzimologia , Manduca , Peptídeo Hidrolases/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Plant Physiol ; 166(1): 396-410, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25073705

RESUMO

The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.


Assuntos
Ciclopentanos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Herbivoria/imunologia , Oxilipinas/metabolismo , Solanum lycopersicum/fisiologia , Tricomas/crescimento & desenvolvimento , Aldeídos/metabolismo , Animais , Preferências Alimentares , Regulação da Expressão Gênica de Plantas , Larva/crescimento & desenvolvimento , Manduca/crescimento & desenvolvimento , Oviposição , Interferência de RNA , Metabolismo Secundário , Terpenos/metabolismo
12.
BMC Plant Biol ; 14: 257, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261073

RESUMO

BACKGROUND: Jasmonates are involved in plant defense, participating in the timely induction of defense responses against insect herbivores from different feeding guilds and with different degrees of host specialization. It is less clear to what extent the induction of plant defense is controlled by different members of the jasmonate family and how specificity of the response is achieved. Using transgenic plants blocked in jasmonic acid (JA) biosynthesis, we previously showed that JA is required for the formation of glandular trichomes and trichome-borne metabolites as constitutive defense traits in tomato, affecting oviposition and feeding behavior of the specialist Manduca sexta. In contrast, JA was not required for the local induction of defense gene expression after wounding. In JA-deficient plants, the JA precursor oxophytodienoic acid (OPDA) substituted as a regulator of defense gene expression maintaining considerable resistance against M. sexta larvae. In this study, we investigate the contribution of JA and OPDA to defense against the generalist herbivore Spodoptera exigua. RESULTS: S. exigua preferred JA-deficient over wild-type tomato plants as a host for both oviposition and feeding. Feeding preference for JA-deficient plants was caused by constitutively reduced levels of repellent terpenes. Growth and development of the larvae, on the other hand, were controlled by additional JA-dependent defense traits, including the JA-mediated induction of foliar polyphenol oxidase (PPO) activity. PPO induction was more pronounced after S. exigua herbivory as compared to mechanical wounding or M. sexta feeding. The difference was attributed to an elicitor exclusively present in S. exigua oral secretions. CONCLUSIONS: The behavior of M. sexta and S. exigua during oviposition and feeding is controlled by constitutive JA/JA-Ile-dependent defense traits involving mono- and sesquiterpenes in both species, and cis-3-hexenal as an additional chemical cue for M. sexta. The requirement of jasmonates for resistance of tomato plants against caterpillar feeding differs for the two species. While the OPDA-mediated induction of local defense is sufficient to restrict growth and development of M. sexta larvae in absence of JA/JA-Ile, defense against S. exigua relied on additional JA/JA-Ile dependent factors, including the induction of foliar polyphenol oxidase activity in response to S. exigua oral secretions.


Assuntos
Catecol Oxidase/metabolismo , Ciclopentanos/metabolismo , Herbivoria , Manduca , Oxilipinas/metabolismo , Solanum lycopersicum/enzimologia , Spodoptera , Animais , Larva , Oviposição , Folhas de Planta/enzimologia , Interferência de RNA
13.
Ann Bot ; 114(6): 1161-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24665109

RESUMO

BACKGROUND AND AIMS: In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform. METHODS: Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development. KEY RESULTS: A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm. CONCLUSIONS: By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME-SBT pairs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Processamento de Proteína Pós-Traducional , Subtilisinas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/metabolismo , Técnicas de Inativação de Genes , Isoenzimas , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteômica , Proteínas Recombinantes de Fusão , Plântula/enzimologia , Plântula/genética , Subtilisinas/metabolismo , Nicotiana/enzimologia , Nicotiana/genética
14.
Bio Protoc ; 13(3): e4608, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36816990

RESUMO

Proteases control plant growth and development by limited proteolysis of regulatory proteins at highly specific sites. This includes the processing of peptide hormone precursors to release the bioactive peptides as signaling molecules. The proteases involved in this process have long remained elusive. Confirmation of a candidate protease as a peptide precursor-processing enzyme requires the demonstration of protease-mediated precursor cleavage in vitro. In vitro cleavage assays rely on the availability of suitable substrates and the candidate protease with high purity. Here, we provide a protocol for the expression, purification, and characterization of tomato (Solanum lycopersicum) phytaspases as candidate proteases for the processing of the phytosulfokine precursor. We also show how synthetic oligopeptide substrates can be used to demonstrate site-specific precursor cleavage. Graphical abstract.

15.
Methods Mol Biol ; 2581: 323-335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413328

RESUMO

Many peptide hormones and growth factors in plants, particularly the small posttranslationally modified signaling peptides, are synthesized as larger precursor proteins. Proteolytic processing is thus required for peptide maturation, and additional posttranslational modifications may contribute to bioactivity. To what extent these posttranslational modifications impact on processing is largely unknown. Likewise, it is poorly understood how the cleavage sites within peptide precursors are selected by specific processing proteases, and whether or not posttranslational modifications contribute to cleavage site recognition. Here, we describe a mass spectrometry-based approach to address these questions. We developed a method using heavy isotope labeling to directly compare cleavage efficiency of different precursor-derived synthetic peptides by mass spectrometry. Thereby, we can analyze the effect of posttranslational modifications on processing and the specific sequence requirements of the processing proteases. As an example, we describe how this method has been used to assess the relevance of tyrosine sulfation for the processing of the Arabidopsis CIF4 precursor by the subtilase SBT5.4.


Assuntos
Arabidopsis , Hormônios Peptídicos , Hormônios Peptídicos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Arabidopsis/metabolismo , Isótopos/metabolismo , Peptídeo Hidrolases/metabolismo
16.
Methods Mol Biol ; 2581: 337-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36413329

RESUMO

A critical step in the functional characterization of proteases is the identification of physiologically relevant substrates, which often starts with a collection of candidate proteins. To test these candidates and identify specific processing sites, in vitro cleavage assays are typically used, followed by polyacrylamide gel electrophoresis (SDS-PAGE) to separate and visualize the cleavage products. For the identification of cleavage sites, the sequences at the N- or C-terminal ends of the cleavage products need to be identified, which is the most challenging step in this procedure. Here, we describe a method for the reliable identification of the N-termini of polypeptides after separation by SDS-PAGE. The procedure relies on in-gel labeling of the N-terminal-free amino group by reductive dimethylation, followed by tryptic digestion and analysis of resulting peptides by mass spectrometry. N-terminal peptides are readily identified by the 28 Da mass dimethyl tag linked to their first amino acid.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Eletroforese em Gel de Poliacrilamida , Aminoácidos , Espectrometria de Massas
17.
Nat Plants ; 9(12): 2085-2094, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38049516

RESUMO

Plant signalling peptides are typically released from larger precursors by proteolytic cleavage to regulate plant growth, development and stress responses. Recent studies reported the characterization of a divergent family of Brassicaceae-specific peptides, SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs), and their perception by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Here, we reveal that the SCOOP family is highly expanded, containing at least 50 members in the Columbia-0 reference Arabidopsis thaliana genome. Notably, perception of these peptides is strictly MIK2-dependent. How bioactive SCOOP peptides are produced, and to what extent their perception is responsible for the multiple physiological roles associated with MIK2 are currently unclear. Using N-terminomics, we validate the N-terminal cleavage site of representative PROSCOOPs. The cleavage sites are determined by conserved motifs upstream of the minimal SCOOP bioactive epitope. We identified subtilases necessary and sufficient to process PROSCOOP peptides at conserved cleavage motifs. Mutation of these subtilases, or their recognition motifs, suppressed PROSCOOP cleavage and associated overexpression phenotypes. Furthermore, we show that higher-order mutants of these subtilases show phenotypes reminiscent of mik2 null mutant plants, consistent with impaired PROSCOOP biogenesis, and demonstrating biological relevance of SCOOP perception by MIK2. Together, this work provides insights into the molecular mechanisms underlying the functions of the recently identified SCOOP peptides and their receptor MIK2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Proteínas de Arabidopsis/genética , Serina , Arabidopsis/fisiologia , Peptídeos , Proteínas Quinases/genética , Receptores de Superfície Celular/genética
18.
Physiol Plant ; 145(1): 52-66, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21988125

RESUMO

Subtilases (SBTs) constitute a large family of serine peptidases. They are commonly found in Archaea, Bacteria and Eukarya, with many more SBTs in plants as compared to other organisms. The expansion of the SBT family in plants was accompanied by functional diversification, and novel, plant-specific physiological roles were acquired in the course of evolution. In addition to their contribution to general protein turnover, plant SBTs are involved in the development of seeds and fruits, the manipulation of the cell wall, the processing of peptide growth factors, epidermal development and pattern formation, plant responses to their biotic and abiotic environment, and in programmed cell death. Plant SBTs share many properties with their bacterial and mammalian homologs, but the adoption of specific roles in plant physiology is also reflected in the acquisition of unique biochemical and structural features that distinguish SBTs in plants from those in other organisms. In this article we provide an overview of the earlier literature on the discovery of the first SBTs in plants, and highlight recent findings with respect to their physiological relevance, structure and function.


Assuntos
Genes de Plantas , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Subtilisinas/metabolismo , Morte Celular , Parede Celular/enzimologia , Parede Celular/genética , Parede Celular/fisiologia , Meio Ambiente , Micorrizas/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas/genética , Plantas/microbiologia , Transporte Proteico , Proteólise , Relação Estrutura-Atividade , Subtilisinas/classificação , Subtilisinas/genética , Subtilisinas/fisiologia , Simbiose
19.
Curr Opin Plant Biol ; 69: 102274, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35977439

RESUMO

Post-translationally modified peptides (PMPs) are important regulators of plant growth and development. They are derived from larger inactive precursors by post-translational modification (PTM) and proteolytic processing to result in the bioactive peptide signals. We discuss how and why these modifications contribute to the bioactivity of inflorescence deficient in abscission (IDA), phytosulfokine (PSK), and peptides of the Casparian strip integrity factor (CIF) family, as signaling molecules during reproductive development. The emerging picture suggests that PTMs evolved to increase the specificity of interaction of PMPs with cognate receptors and of PMP precursors with processing proteases. Cleavage sites in PMP precursors are recognized by subtilases (SBTs) in a highly specific manner. SBT-mediated processing results in the activation of PMP signals regulating stress-induced flower drop, the formation of the embryonic cuticle, and pollen development.


Assuntos
Hormônios Peptídicos , Flores/fisiologia , Peptídeo Hidrolases , Desenvolvimento Vegetal , Plantas
20.
Methods Mol Biol ; 2447: 67-81, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583773

RESUMO

Many proteins are regulated post-translationally by proteolytic processing. This includes plant signaling peptides that are proteolytically released from larger precursor proteins. The proteases involved in the biogenesis of signaling peptides and in regulation of other proteins by limited proteolysis are largely unknown. Here we describe how protease inhibitors that are specific for a certain class of proteases can be employed for the identification of proteases that are responsible for the processing of a given target protein. After having identified the protease family to which the processing enzyme belongs, candidate proteases and the GFP-tagged target protein are agro-infiltrated for transient expression in N. benthamiana leaves. Cleavage products are analyzed on immuno-blots and specificity of cleavage is confirmed by co-expression of class-specific inhibitors. For the identification of processing sites within the target protein, cleavage product(s) are purified by immunoprecipitation followed by polyacrylamide gel electrophoresis and analyzed by mass spectrometry.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Proteólise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA