Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 113003, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774298

RESUMO

We have studied the stability of the smallest long-lived all carbon molecular dianion (C_{7}^{2-}) in new time domains and with a single ion at a time using a cryogenic electrostatic ion-beam storage ring. We observe spontaneous electron emission from internally excited dianions on millisecond timescales and monitor the survival of single colder C_{7}^{2-} molecules on much longer timescales. We find that their intrinsic lifetime exceeds several minutes-6 orders of magnitude longer than established from earlier experiments on C_{7}^{2-}. This is consistent with our calculations of vertical electron detachment energies predicting one inherently stable isomer and one isomer which is stable or effectively stable behind a large Coulomb barrier for C_{7}^{2-}→C_{7}^{-}+e^{-} separation.

2.
J Chem Phys ; 151(4): 044306, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370544

RESUMO

We have measured fragment mass spectra and total destruction cross sections for protonated and deprotonated adenine following collisions with He at center-of-mass energies in the 20-240 eV range. Classical and ab initio molecular dynamics simulations are used to provide detailed information on the fragmentation pathways and suggest a range of alternative routes compared to those reported in earlier studies. These new pathways involve, for instance, losses of HNC molecules from protonated adenine and losses of NH2 or C3H2N2 from deprotonated adenine. The present results may be important to advance the understanding of how biomolecules may be formed and processed in various astrophysical environments.

3.
Phys Rev Lett ; 121(8): 083401, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192576

RESUMO

We have measured total absolute cross sections for the mutual neutralization (MN) of O^{-} with O^{+} and N^{+}. A fine resolution (of about 50 meV) in the kinetic energy spectra of the product neutral atoms allows unique identification of the atomic states participating in the mutual neutralization process. Cross sections and branching ratios have also been calculated down to 1 meV center-of-mass collision energy for these two systems, with a multichannel Landau-Zener model and an asymptotic method for the ionic-covalent coupling matrix elements. The importance of two-electron processes in one-electron transfer is demonstrated by the dominant contribution of a core-excited configuration of the nitrogen atom in N^{+}+O^{-} collisions. This effect is partially accounted for by introducing configuration mixing in the evaluation of coupling matrix elements.

4.
J Chem Phys ; 148(21): 214309, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29884035

RESUMO

We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.


Assuntos
Absorção Fisico-Química , Flavina-Adenina Dinucleotídeo/química , Medições Luminescentes , Mononucleotídeo de Flavina/química
5.
J Chem Phys ; 145(10): 104303, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27634256

RESUMO

Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm(-1)) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.


Assuntos
Absorção Fisico-Química , Gases/química , Medições Luminescentes , Oxazinas/química , Solventes/química , Vibração
6.
J Chem Phys ; 142(17): 171102, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25956080

RESUMO

Tris(bipyridine)ruthenium(II) (Ru(bipy)3 (2+)) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

7.
J Chem Phys ; 142(14): 144305, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877576

RESUMO

We have investigated the effectiveness of molecular hydrogen (H2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H2-formation rates.

8.
Phys Chem Chem Phys ; 16(40): 21980-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25205444

RESUMO

We report experimental total, absolute, fragmentation cross sections for anthracene C14H10, acridine C13H9N, and phenazine C12H8N2 ions colliding with He at center-of-mass energies close to 100 eV. In addition, we report results for the same ions colliding with Ne, Ar, and Xe at higher energies. The total fragmentation cross sections for these three ions are the same within error bars for a given target. The measured fragment mass distributions reveal significant contributions from both delayed (≫10(-12) s) statistical fragmentation processes as well as non-statistical, prompt (∼10(-15) s), single atom knockout processes. The latter dominate and are often followed by secondary statistical fragmentation. Classical Molecular Dynamics (MD) simulations yield separate cross sections for prompt and delayed fragmentation which are consistent with the experimental results. The intensity of the single C/N-loss peak, the signature of non-statistical fragmentation, decreases with the number of N atoms in the parent ion. The fragment intensity distributions for losses of more than one C or N atom are rather similar for C14H10 and C13H9N but differ strongly for C12H8N2 where weak C-N bonds often remain in the fragments after the first fragmentation step. This greatly increases their probability to fragment further. Distributions of internal energy remaining in the fragments after knockout are obtained from the MD simulations.

9.
J Chem Phys ; 140(22): 224306, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24929387

RESUMO

We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH(+)) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH(+) + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C6H5). Thus nonstatistical fragmentation may be an effective initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.

10.
Phys Rev Lett ; 110(18): 185501, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683214

RESUMO

We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.


Assuntos
Partículas alfa , Fulerenos/química , Cátions Bivalentes/química , Hélio/química , Modelos Moleculares , Peso Molecular , Método de Monte Carlo , Termodinâmica
11.
J Chem Phys ; 139(3): 034309, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883029

RESUMO

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.

12.
Rev Sci Instrum ; 89(7): 075102, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068131

RESUMO

In this paper, we give a detailed description of an electrospray ion source test bench and a single-pass setup for ion fragmentation studies at the Double ElectroStatic Ion Ring ExpEriment infrastructure at Stockholm University. This arrangement allows for collision-induced dissociation experiments at the center-of-mass energies between 10 eV and 1 keV. Charged fragments are analyzed with respect to their kinetic energies (masses) by means of an electrostatic energy analyzer with a wide angular acceptance and adjustable energy resolution.

13.
Rev Sci Instrum ; 89(3): 033112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604753

RESUMO

A sputter ion source with a solid graphite target has been used to produce dianions with a focus on carbon cluster dianions, Cn2-, with n = 7-24. Singly and doubly charged anions from the source were accelerated together to kinetic energies of 10 keV per atomic unit of charge and injected into one of the cryogenic (13 K) ion-beam storage rings of the Double ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous decay of internally hot Cn2- dianions injected into the ring yielded Cn- anions with kinetic energies of 20 keV, which were counted with a microchannel plate detector. Mass spectra produced by scanning the magnetic field of a 90° analyzing magnet on the ion injection line reflect the production of internally hot C72- - C242- dianions with lifetimes in the range of tens of microseconds to milliseconds. In spite of the high sensitivity of this method, no conclusive evidence of C62- was found while there was a clear C72- signal with the expected isotopic distribution. This is consistent with earlier experimental studies and with theoretical predictions. An upper limit is deduced for a C62- signal that is two orders-of-magnitude smaller than that for C72-. In addition, CnO2- and CnCu2- dianions were detected.

14.
J Phys Chem Lett ; 6(22): 4504-9, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26523738

RESUMO

We have measured absolute cross sections for ultrafast (femtosecond) single-carbon knockout from polycyclic aromatic hydrocarbon (PAH) cations as functions of He­PAH center-of-mass collision energy in the 10­200 eV range. Classical molecular dynamics (MD) simulations cover this range and extend up to 105 eV. The shapes of the knockout cross sections are well-described by a simple analytical expression yielding experimental and MD threshold energies of EthExp = 32.5 ± 0.4 eV and EthMD = 41.0 ± 0.3 eV, respectively. These are the first measurements of knockout threshold energies for molecules isolated in vacuo. We further deduce semiempirical (SE) and MD displacement energies, i.e., the energy transfers to the PAH molecules at the threshold energies for knockout, of TdispSE = 23.3 ± 0.3 eV and TdispMD = 27.0 ± 0.3 eV. The semiempirical results compare favorably with measured displacement energies for graphene (Tdisp = 23.6 eV).

15.
Rev Sci Instrum ; 84(5): 055115, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742597

RESUMO

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

16.
Rev Sci Instrum ; 83(3): 035104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462957

RESUMO

A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10(7) cm(-3). A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA