Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Magn Reson Med ; 92(4): 1376-1391, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38899391

RESUMO

PURPOSE: We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS: MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillating z $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realistic B 1 + $$ {\mathrm{B}}_1^{+} $$ and Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS: A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION: The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.


Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagens de Fantasmas , Simulação por Computador , Fótons , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador , Interpretação de Imagem Assistida por Computador/métodos
2.
Magn Reson Med ; 90(6): 2572-2591, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667645

RESUMO

PURPOSE: Developing a general framework with a novel stochastic offset strategy for the design of optimized RF pulses and time-varying spatially non-linear ΔB0 shim array fields for restricted slice excitation and refocusing with refined magnetization profiles within the intervals of the fixed voxels. METHODS: Our framework uses the decomposition property of the Bloch equations to enable joint design of RF-pulses and shim array fields for restricted slice excitation and refocusing with auto-differentiation optimization. Bloch simulations are performed independently on orthogonal basis vectors, Mx, My, and Mz, which enables designs for arbitrary initial magnetizations. Requirements for refocusing pulse designs are derived from the extended phase graph formalism obviating time-consuming sub-voxel isochromatic simulations to model the effects of crusher gradients. To refine resultant slice-profiles because of voxelwise optimization functions, we propose an algorithm that stochastically offsets spatial points at which loss is computed during optimization. RESULTS: We first applied our proposed design framework to standard slice-selective excitation and refocusing pulses in the absence of non-linear ΔB0 shim array fields and compared them against pulses designed with Shinnar-Le Roux algorithm. Next, we demonstrated our technique in a simulated setup of fetal brain imaging in pregnancy for restricted-slice excitation and refocusing of the fetal brain. CONCLUSIONS: Our proposed framework for optimizing RF pulse and time-varying spatially non-linear ΔB0 shim array fields achieve high fidelity restricted-slice excitation and refocusing for fetal MRI, which could enable zoomed fast-spin-echo-MRI and other applications.


Assuntos
Aumento da Imagem , Imageamento por Ressonância Magnética , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Imagens de Fantasmas
3.
Magn Reson Med ; 89(4): 1401-1417, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36441743

RESUMO

PURPOSE: Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS: Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS: The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION: Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.


Assuntos
Imageamento por Ressonância Magnética , Software , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
4.
Magn Reson Med ; 90(6): 2592-2607, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582214

RESUMO

PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de Equipamento
5.
NMR Biomed ; 36(11): e5002, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439129

RESUMO

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.


Assuntos
Medula Cervical , Adulto , Humanos , Medula Cervical/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
6.
NMR Biomed ; 36(1): e4825, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36097704

RESUMO

PURPOSE: To describe the current properties and capabilities of an open-source hardware and software package that is being developed by many sites internationally with the aim of providing an inexpensive yet flexible platform for low-cost MRI. METHODS: This article describes three different setups from 50 to 360 mT in different settings, all of which used the MaRCoS console for acquiring data, and different types of software interface (custom-built GUI or Pulseq overlay) to acquire it. RESULTS: Images are presented both from phantoms and in vivo from healthy volunteers to demonstrate the image quality that can be obtained from the MaRCoS hardware/software interfaced to different low-field magnets. CONCLUSIONS: The results presented here show that a number of different sequences commonly used in the clinic can be programmed into an open-source system relatively quickly and easily, and can produce good quality images even at this early stage of development. Both the hardware and software will continue to develop, and it is an aim of this article to encourage other groups to join this international consortium.


Assuntos
Benchmarking , Espectroscopia de Ressonância Magnética , Humanos
7.
Neuroimage ; 261: 119498, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917918

RESUMO

Increased static field inhomogeneities are a burden for human brain MRI at Ultra-High-Field. In particular they cause enhanced Echo-Planar image distortions and signal losses due to magnetic susceptibility gradients at air-tissue interfaces in the subject's head. In the past decade, Multi-Coil Arrays (MCA) have been proposed to shim the field in the brain better than the 2nd or 3rd order Spherical Harmonic (SH) coils usually offered by MRI manufacturers. Here we present a novel MCA, named SCOTCH, optimized for whole brain shimming. Based on a cylindrical structure, it features several layers of small coils whose shape, size and location are found from a principal component analysis of ideal stream functions computed from an internal 100-brain fieldmap database. From an Open-Access external database of 126 brains, our SCOTCH implementation is shown to be equivalent to a partial 7th-order SH system with unlimited power, outperforming all known existing MCA prototypes. This result is further confirmed by a low-cost  30-cm diameter SCOTCH prototype built with 48 coils on 3 layers, and tested on 7 volunteers at 7T with a parallel-transmit RF coil made to be inserted in SCOTCH. Echo-Planar images of the subject brains before and after SCOTCH shimming show large signal recoveries, especially in the prefrontal cortex.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Ondas de Rádio
8.
Magn Reson Med ; 87(5): 2161-2177, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34931714

RESUMO

PURPOSE: To demonstrate, through numerical simulations, novel designs of spatially selective radiofrequency (RF) excitations of the fetal brain by both a restricted 2D slice and 3D inner-volume selection. These designs exploit a single-channel RF pulse, conventional gradient fields, and the spatially non-linear ΔB0 fields of a multi-coil shim array, using an auto-differentiation optimization algorithm. METHODS: The design algorithm jointly optimizes the RF pulse and the time-varying ΔB0 fields, which is produced by a 64-channel multi-coil ΔB0 body array to augment the RF and the linear gradient fields, using an auto-differentiation approach. Two design targets were specified, one a 4-mm thick slice with a limited in-slice extent in one dimension ("restricted slice"), and the other a 3D inner-volume selection encompassing the fetal brain ("inner volume"). The RF duration was limited to 2 ms for the restricted slice excitation and 6 ms for the inner-volume excitation. RESULTS: Excitation profiles were achieved for both the restricted slice excitation task (one-minus-minimum magnitude, 8%) within the region of interest (ROI) and (maximum-minus-zero magnitude, 8%) in the suppressed regions and the fetal brain volume excitation task (13% and 9%, respectively). CONCLUSIONS: The proposed joint design of RF and time-varying, spatially non-linear ΔB0 fields achieves the target excitation profiles with short RF pulse durations and demonstrates the potential to enhance fetal MRI with multi-channel body shim arrays.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Algoritmos , Encéfalo/diagnóstico por imagem , Frequência Cardíaca , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
9.
Magn Reson Med ; 88(6): 2548-2563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36093989

RESUMO

PURPOSE: To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS: FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS: Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION: FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
10.
Magn Reson Med ; 87(2): 614-628, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480778

RESUMO

PURPOSE: Point-of-care MRI requires operation outside of Faraday shielded rooms normally used to block image-degrading electromagnetic interference (EMI). To address this, we introduce the EDITER method (External Dynamic InTerference Estimation and Removal), an external sensor-based method to retrospectively remove image artifacts from time-varying external interference sources. THEORY AND METHODS: The method acquires data from multiple EMI detectors (tuned receive coils as well as untuned electrodes placed on the body) simultaneously with the primary MR coil during and between image data acquisition. We calculate impulse response functions dynamically that map the data from the detectors to the time varying artifacts then remove the transformed detected EMI from the MR data. Performance of the EDITER algorithm was assessed in phantom and in vivo imaging experiments in an 80 mT portable brain MRI in a controlled EMI environment and with an open 47.5 mT MRI scanner in an uncontrolled EMI setting. RESULTS: In the controlled setting, the effectiveness of the EDITER technique was demonstrated for specific types of introduced EMI sources with up to a 97% reduction of structured EMI and up to 76% reduction of broadband EMI in phantom experiments. In the uncontrolled EMI experiments, we demonstrate EMI reductions of up to 99% using an electrode and pick-up coil in vivo. We demonstrate up to a nine-fold improvement in image SNR with the method. CONCLUSION: The EDITER technique is a flexible and robust method to improve image quality in portable MRI systems with minimal passive shielding and could reduce the reliance of MRI on shielded rooms and allow for truly portable MRI.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Algoritmos , Imagens de Fantasmas , Estudos Retrospectivos
11.
Magn Reson Med ; 88(3): 1419-1433, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35605167

RESUMO

PURPOSE: To extend the coverage of brain coil arrays to the neck and cervical-spine region to enable combined head and neck imaging at 7 Tesla (T) ultra-high field MRI. METHODS: The coil array structures of a 64-channel receive coil and a 16-channel transmit coil were merged into one anatomically shaped close-fitting housing. Transmit characteristics were evaluated in a B1+ -field mapping study and an electromagnetic model. Receive SNR and the encoding capability for accelerated imaging were evaluated and compared with a commercially available 7 T brain array coil. The performance of the head-neck array coil was demonstrated in human volunteers using high-resolution accelerated imaging. RESULTS: In the brain, the SNR matches the commercially available 32-channel brain array and showed improvements in accelerated imaging capabilities. More importantly, the constructed coil array improved the SNR in the face area, neck area, and cervical spine by a factor of 1.5, 3.4, and 5.2, respectively, in regions not covered by 32-channel brain arrays at 7 T. The interelement coupling of the 16-channel transmit coil ranged from -14 to -44 dB (mean = -19 dB, adjacent elements <-18 dB). The parallel 16-channel transmit coil greatly facilitates B1+ field shaping required for large FOV neuroimaging at 7 T. CONCLUSION: This new head-neck array coil is the first demonstration of a device of this nature used for combined full-brain, head-neck, and cervical-spine imaging at 7 T. The array coil is well suited to provide large FOV images, which potentially improves ultrahigh field neuroimaging applications for clinical settings.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Vértebras Cervicais , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído
12.
Magn Reson Med ; 87(2): 1074-1092, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632626

RESUMO

PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
13.
NMR Biomed ; 35(1): e4621, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609036

RESUMO

MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B0 spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B0 -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B0 uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Glutaratos/análise , Isocitrato Desidrogenase/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação
14.
Muscle Nerve ; 66(2): 206-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621349

RESUMO

INTRODUCTION/AIMS: Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS: Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS: We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION: This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/patologia
15.
Neuroimage ; 238: 118256, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118399

RESUMO

In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Difusão por Ressonância Magnética/instrumentação , Desenho de Equipamento , Humanos , Neuroimagem , Razão Sinal-Ruído
16.
Magn Reson Med ; 85(3): 1294-1307, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32970869

RESUMO

PURPOSE: To develop a method for slice-wise dynamic distortion correction for EPI using rapid spatiotemporal B0 field measurements from FID navigators (FIDnavs) and to evaluate the efficacy of this new approach relative to an established data-driven technique. METHODS: A low-resolution reference image was used to create a forward model of FIDnav signal changes to enable estimation of spatiotemporal B0 inhomogeneity variations up to second order from measured FIDnavs. Five volunteers were scanned at 3 T using a 64-channel coil with FID-navigated EPI. The accuracy of voxel shift measurements and geometric distortion correction was assessed for experimentally induced magnetic field perturbations. The temporal SNR was evaluated in EPI time-series acquired at rest and with a continuous nose-touching action, before and after image realignment. RESULTS: Field inhomogeneity coefficients and voxel shift maps measured using FIDnavs were in excellent agreement with multi-echo EPI measurements. The FID-navigated distortion correction accurately corrected image geometry in the presence of induced magnetic field perturbations, outperforming the data-driven approach in regions with large field offsets. In functional MRI scans with nose touching, FIDnav-based correction yielded temporal SNR gains of 30% in gray matter. Following image realignment, which accounted for global image shifts, temporal SNR gains of 3% were achieved. CONCLUSIONS: Our proposed application of FIDnavs enables slice-wise dynamic distortion correction with high temporal efficiency. We achieved improved signal stability by leveraging the encoding information from multichannel coils. This approach can be easily adapted to other EPI-based sequences to improve temporal SNR for a variety of clinical and research applications.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
Magn Reson Med ; 86(2): 791-803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748985

RESUMO

PURPOSE: We combine SNR-efficient acquisition and model-based reconstruction strategies with newly available hardware instrumentation to achieve distortion-free in vivo diffusion MRI of the brain at submillimeter-isotropic resolution with high fidelity and sensitivity on a clinical 3T scanner. METHODS: We propose blip-up/down acquisition (BUDA) for multishot EPI using interleaved blip-up/blip-down phase encoding and incorporate B0 forward-modeling into structured low-rank reconstruction to enable distortion-free and navigator-free diffusion MRI. We further combine BUDA-EPI with an SNR-efficient simultaneous multislab acquisition (generalized slice-dithered enhanced resolution ["gSlider"]), to achieve high-isotropic-resolution diffusion MRI. To validate gSlider BUDA-EPI, whole-brain diffusion data at 860-µm and 780-µm data sets were acquired. Finally, to improve the conditioning and minimize noise penalty in BUDA reconstruction at very high resolutions where B0 inhomogeneity can have a detrimental effect, the level of B0 inhomogeneity was reduced by incorporating slab-by-slab dynamic shimming with a 32-channel AC/DC coil into the acquisition. Whole-brain 600-µm diffusion data were then acquired with this combined approach of gSlider BUDA-EPI with dynamic shimming. RESULTS: The results of 860-µm and 780-µm datasets show high geometry fidelity with gSlider BUDA-EPI. With dynamic shimming, the BUDA reconstruction's noise penalty was further alleviated. This enables whole-brain 600-µm isotropic resolution diffusion imaging with high image quality. CONCLUSIONS: The gSlider BUDA-EPI method enables high-quality, distortion-free diffusion imaging across the whole brain at submillimeter resolution, where the use of multicoil dynamic B0 shimming further improves reconstruction performance, which can be particularly useful at very high resolutions.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar
18.
Neuroimage ; 209: 116516, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904490

RESUMO

The temporal monocular crescent (TMC) is the most peripheral portion of the visual field whose perception relies solely on input from the ipsilateral eye. According to a handful of post-mortem histological studies in humans and non-human primates, the TMC is represented visuotopically within the most anterior portion of the primary visual cortical area (V1). However, functional evidence of the TMC visuotopic representation in human visual cortex is rare, mostly due to the small size of the TMC representation (~6% of V1) and due to the technical challenges of stimulating the most peripheral portion of the visual field inside the MRI scanner. In this study, by taking advantage of custom-built MRI-compatible visual stimulation goggles with curved displays, we successfully stimulated the TMC region of the visual field in eight human subjects, half of them right-eye dominant, inside a 3 â€‹T MRI scanner. This enabled us to localize the representation of TMC, along with the blind spot representation (another visuotopic landmark in V1), in all volunteers, which match the expected spatial pattern based on prior anatomical studies. In all hemispheres, the TMC visuotopic representation was localized along the peripheral border of V1, within the most anterior portion of the calcarine sulcus, without any apparent extension into the second visual area (V2). We further demonstrate the reliability of this localization within/across experimental sessions, and consistency in the spatial location of TMC across individuals after accounting for inter-subject structural differences.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Disco Óptico/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Adulto , Mapeamento Encefálico/instrumentação , Dispositivos de Proteção dos Olhos , Feminino , Humanos , Masculino , Disco Óptico/anatomia & histologia , Disco Óptico/diagnóstico por imagem , Estimulação Luminosa , Córtex Visual/anatomia & histologia , Córtex Visual/diagnóstico por imagem , Adulto Jovem
19.
Magn Reson Med ; 83(4): 1499-1511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31631391

RESUMO

PURPOSE: We designed and implemented an orthogonal shim array consisting of shim coils with their planes perpendicular to the planes of neighboring RF coils. This shim coil improves the magnetic field homogeneity by minimizing the interference to RF coils. METHODS: Using realistic off-resonance maps of the human brain, we first evaluated the performance of shim coils in different orientations. Based on simulations, we developed a 7-channel orthogonal shim array, whose coil plan was perpendicular to neighboring RF coils, at the forehead. A programmable open-source current driver supplied shim currents. RESULTS: The 7-channel orthogonal shim array caused only marginal SNR loss to the integrated 32-channel RF-shim array. The 7-channel orthogonal shim array itself improved the magnetic field homogeneity by 30% in slice-optimized shimming, comparable to the baseline shimming offered by the scanner's 2nd order spherical harmonic shimming. CONCLUSION: Orthogonal shim coils can improve the field homogeneity while maintaining high image SNR.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Imagens de Fantasmas
20.
Magn Reson Med ; 84(2): 1061-1075, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31971632

RESUMO

PURPOSE: Multichannel transcranial magnetic stimulation (TMS)1 is an emerging technology that allows multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. A multichannel TMS/MRI head coil array for 3 Tesla is currently under development to mitigate challenges of concurrent TMS/fMRI as well as enable potential new applications. The influence of the multichannel TMS system on the MR image quality and safety must be carefully investigated. METHODS: A standard birdcage volume coil for 3 Tesla systems was simulated using a commercial numerical electromagnetic solver. Two setups, consisting of 1) a MR-compatible TMS coil, and 2) a 3-axis TMS coil array, were simulated to quantify changes in the transmit field B1+ and the SAR. A realistically shaped homogeneous head model was used in the computations. RESULTS: The stimulation coils produced enhancements and attenuations on the transmit field with effects greater than 5% up to 2.4 cm and 3.3 cm under the scalp for the MR-compatible TMS coil and 3-axis TMS coil array, respectively. The 10 g-SAR distribution did not change significantly in either of the cases; however, the nominal SAR maximum locus was shifted between existing hot spots. CONCLUSION: The simulated B1+ variations found near the TMS coils indicate the possibility of inducing sequence-dependent image artefacts predominatly limited to the vicinity of the coil(s). However, we conclude that neither the MR-compatible commercial TMS coil nor the 3-axis TMS coil array siginificantly elevate SAR in the head or neck beyond accepted safety limits.


Assuntos
Cabeça , Estimulação Magnética Transcraniana , Artefatos , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA