Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Br J Haematol ; 181(4): 486-494, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29676467

RESUMO

Cell cycle status may play an important role in directing patient therapy. We therefore determined the cell cycle status of leukaemic cells by immunophenotypic analysis of bone marrow trephine biopsies from 181 patients with acute myeloid leukaemia (AML) and correlated the results with biological features and clinical outcome. There was considerable heterogeneity between patients. The presenting white cell count significantly correlated with the proportion of non-quiescent cells (P < 0·0001), of cycling cells beyond G1 (P < 0·0001) and the speed of cycling (P < 0·0001). Profiles in acute promyelocytic leukaemia (APL) differed from non-APL and were consistent with more differentiated cells with reduced proliferative potential, but no significant differences were observed between non-APL cytogenetic risk groups. NPM1 mutations but not FLT3 internal tandem duplication (FLT3ITD ) were significantly associated with a higher proportion of cells beyond G1 (P = 0·002) and faster speed of cycling (P = 0·003). Resistance to standard cytosine arabinoside and daunorubicin induction chemotherapy was significantly related to a slower speed of cycling (P = 0·0002), as was a higher relapse rate (P = 0·05), but not with the proportion of non-quiescent cells or actively cycling cells. These results show a link between the cycling speed of AML cells and the response to chemotherapy, and help to identify a group with a very poor prognosis.


Assuntos
Ciclo Celular , Genótipo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Mutação , Proteínas Nucleares , Tirosina Quinase 3 Semelhante a fms , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Citarabina/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Imunofenotipagem , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
2.
Eur J Oral Sci ; 126(3): 186-196, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29745471

RESUMO

Oral squamous cell carcinoma (OSCC) is still an unabated global killer with little advancement in its survival rate. DNA replication licensing proteins and Aurora kinase A are biomarkers that play important roles in genomic stability. The expression profile of minichromosomal maintenance protein 2 (MCM2), Ki67, geminin, and Aurora-A were linked to clinicopathological and outcome parameters, survival, and DNA content in 125 cases of OSCC. Oral fibroepithelial polyps (OFEP) were controls. The OSCC tumour cells were in a rapidly proliferating state, as assessed by the increased expression profile of MCM2, Ki67, geminin, and Aurora-A and of the geminin/Ki67 ratio, and the decrease of the MCM2/Ki67 ratio, in OSCC compared with OFEP (P < 0.000). There was an association between expression of MCM2, Ki67, and geminin and tumour histologic and invasive front grade (P < 0.05). A total of 82% of the OSCC assessed had aneuploid DNA content, which was associated with increased expression intensity of Aurora-A (P = 0.01). Geminin and the geminin/Ki67 ratio were associated with TNM staging (P < 0.05), and weak expression of MCM2, Ki67, geminin, and Aurora-A were predictive of OSCC survival (P < 0.05). Dysregulation of the origin licensing pathway and the mitotic pathway are important events in OSCC, and the combined analysis of these proteins may contribute to improved treatment decisions.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Geminina/metabolismo , Antígeno Ki-67/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Neoplasias Bucais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Aurora Quinase A/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Proliferação de Células/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/genética , Neoplasias Bucais/patologia
3.
J Proteome Res ; 15(6): 1907-38, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142241

RESUMO

MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFß signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.


Assuntos
Compartimento Celular , Replicação do DNA , Fibroblastos/química , Estresse Oxidativo , Proteoma/análise , Frações Subcelulares/química , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Citoplasma/química , Citoplasma/metabolismo , Fibroblastos/citologia , Fibroblastos/ultraestrutura , Humanos , Transporte Proteico , Proteômica/métodos , Frações Subcelulares/metabolismo
4.
Br J Haematol ; 174(2): 275-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27061724

RESUMO

Using immunohistochemistry and flow cytometry to define phases of the cell cycle, this study shows that a high proportion of acute myeloid leukaemia (AML) blasts obtained from trephine biopsies are cycling, whereas >95% of peripheral blood-derived blasts are arrested in G1 . Results obtained from bone marrow aspirates are more similar to those from blood rather than from trephine biopsies. These differences were confirmed by gene expression profiling in a patient with high count AML. This has implications for cell cycle and other biological studies using aspirates rather than trephine biopsies and for the use of cell mobilising agents before chemotherapy.


Assuntos
Crise Blástica/patologia , Ciclo Celular , Leucemia Mieloide Aguda/patologia , Adulto , Idoso , Biópsia , Células da Medula Óssea/patologia , Pontos de Checagem do Ciclo Celular , Feminino , Fase G1 , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/patologia , Trepanação
5.
J Pathol ; 233(4): 344-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24931331

RESUMO

Aberrant mitosis is a common feature of cancer, yet little is known about the altered genes causing mitotic defects. We screened human tumours for cells with morphological signatures of highly specific mitotic defects previously assigned to candidate genes in a genome-wide RNA interference screen carried out in HeLa cells (www.mitocheck.org). We discovered a striking enrichment of early mitotic configurations indicative of prophase/prometaphase delay in breast cancer. Promoter methylation analysis of MitoCheck candidate genes assigned to the corresponding 'mitotic delay' class linked this defect to epigenetic silencing of the gene encoding pregnancy-associated plasma protein-A (PAPPA), a secreted protease. PAPPA silencing was highly prevalent in precursor lesions and invasive breast cancer. Experimental manipulation of PAPPA protein levels in human mammary epithelial cells and in breast cancer cell lines demonstrates that progression through early mitosis is dependent on PAPPA function, and that breast cancer cells become more invasive after down-regulation of this protease. PAPPA regulates mitotic progression through modulating the IGF-1 signalling pathway resulting in activation of the forkhead transcription factor FoxM1, which drives a transcriptional cluster of essential mitotic genes. Our results show that PAPPA has a critical function in normal cell division and is targeted early in breast cancer development.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Epigenômica , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Mitose/fisiologia , Proteína Plasmática A Associada à Gravidez/fisiologia , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Pessoa de Meia-Idade , Fenótipo , Proteína Plasmática A Associada à Gravidez/genética , Interferência de RNA/fisiologia , Transdução de Sinais/fisiologia
6.
J Proteome Res ; 13(10): 4398-423, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25133973

RESUMO

We have used a subcellular spatial razor approach based on LC-MS/MS-based proteomics with SILAC isotope labeling to determine changes in protein abundances in the nuclear and cytoplasmic compartments of human IMR90 fibroblasts subjected to mild oxidative stress. We show that response to mild tert-butyl hydrogen peroxide treatment includes redistribution between the nucleus and cytoplasm of numerous proteins not previously associated with oxidative stress. The 121 proteins with the most significant changes encompass proteins with known functions in a wide variety of subcellular locations and of cellular functional processes (transcription, signal transduction, autophagy, iron metabolism, TCA cycle, ATP synthesis) and are consistent with functional networks that are spatially dispersed across the cell. Both nuclear respiratory factor 2 and the proline regulatory axis appear to contribute to the cellular metabolic response. Proteins involved in iron metabolism or with iron/heme as a cofactor as well as mitochondrial proteins are prominent in the response. Evidence suggesting that nuclear import/export and vesicle-mediated protein transport contribute to the cellular response was obtained. We suggest that measurements of global changes in total cellular protein abundances need to be complemented with measurements of the dynamic subcellular spatial redistribution of proteins to obtain comprehensive pictures of cellular function.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Estresse Oxidativo , Linhagem Celular , Cromatografia Líquida , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Transporte Proteico , Espectrometria de Massas em Tandem
7.
EMBO J ; 29(19): 3381-94, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20729811

RESUMO

Perturbation of DNA replication initiation arrests human cells in G1, pointing towards an origin activation checkpoint. We used RNAi against Cdc7 kinase to inhibit replication initiation and dissect this checkpoint in fibroblasts. We show that the checkpoint response is dependent on three axes coordinated through the transcription factor FoxO3a. In arrested cells, FoxO3a activates the ARF-∣Hdm2-∣p53 → p21 pathway and mediates p15(INK4B) upregulation; p53 in turn activates expression of the Wnt/ß-catenin signalling antagonist Dkk3, leading to Myc and cyclin D1 downregulation. The resulting loss of CDK activity inactivates the Rb-E2F pathway and overrides the G1-S transcriptional programme. Fibroblasts concomitantly depleted of Cdc7/FoxO3a, Cdc7/p15, Cdc7/p53 or Cdc7/Dkk3 can bypass the arrest and proceed into an abortive S phase followed by apoptosis. The lack of redundancy between the checkpoint axes and reliance on several tumour suppressor proteins commonly inactivated in human tumours provides a mechanistic basis for the cancer-cell-specific killing observed with emerging Cdc7 inhibitors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , Fatores de Transcrição Forkhead/metabolismo , Fase G1/fisiologia , Regulação da Expressão Gênica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal , Western Blotting , Proteínas de Ciclo Celular/genética , Fracionamento Celular , Linhagem Celular , Quimiocinas , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Primers do DNA/genética , Imunofluorescência , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Curr Opin Cell Biol ; 19(6): 672-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18032010

RESUMO

Analysis of complex and redundant pathways that control proliferation, differentiation, apoptosis and DNA damage response by global genome wide analysis is an intensive area of investigation aimed at identifying unique molecular signatures of prognostic significance in cancer. An alternative approach is to focus on the cell cycle machinery, which acts as an integration point for information transduced through upstream signalling pathways. Analysis of the DNA replication licensing pathway and the mitotic regulatory machinery in tumour biopsy material is now leading to the identification of novel biomarkers that are being exploited in cancer detection and prognostic assessment.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Neoplasias/metabolismo , Humanos
9.
Proc Natl Acad Sci U S A ; 108(13): 5278-83, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21402913

RESUMO

During cell proliferation, the abundance of the glycolysis-promoting enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform 3 (PFKFB3), is controlled by the ubiquitin ligase APC/C-Cdh1 via a KEN box. We now demonstrate in synchronized HeLa cells that PFKFB3, which appears in mid-to-late G1, is essential for cell division because its silencing prevents progression into S phase. In cells arrested by glucose deprivation, progression into S phase after replacement of glucose occurs only when PFKFB3 is present or is substituted by the downstream glycolytic enzyme 6-phosphofructo-1-kinase. PFKFB3 ceases to be detectable during late G1/S despite the absence of Cdh1; this disappearance is prevented by proteasomal inhibition. PFKFB3 contains a DSG box and is therefore a potential substrate for SCF-ß-TrCP, a ubiquitin ligase active during S phase. In synchronized HeLa cells transfected with PFKFB3 mutated in the KEN box, the DSG box, or both, we established the breakdown routes of the enzyme at different stages of the cell cycle and the point at which glycolysis is enhanced. Thus, the presence of PFKFB3 is tightly controlled to ensure the up-regulation of glycolysis at a specific point in G1. We suggest that this up-regulation of glycolysis and its associated events represent the nutrient-sensitive restriction point in mammalian cells.


Assuntos
Ciclo Celular/fisiologia , Glicólise/fisiologia , Fosfofrutoquinase-2/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Proliferação de Células , Estabilidade Enzimática , Glucose/metabolismo , Células HeLa , Humanos , Ácido Láctico/metabolismo , Dados de Sequência Molecular , Fosfofrutoquinase-2/genética , Interferência de RNA
10.
J Proteome Res ; 12(3): 1436-53, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23320540

RESUMO

Depletion of DNA replication initiation factors such as CDC7 kinase triggers the origin activation checkpoint in healthy cells and leads to a protective cell cycle arrest at the G1 phase of the mitotic cell division cycle. This protective mechanism is thought to be defective in cancer cells. To investigate how this checkpoint is activated and maintained in healthy cells, we conducted a quantitative SILAC analysis of the nuclear- and cytoplasmic-enriched compartments of CDC7-depleted fibroblasts and compared them to a total cell lysate preparation. Substantial changes in total abundance and/or subcellular location were detected for 124 proteins, including many essential proteins associated with DNA replication/cell cycle. Similar changes in protein abundance and subcellular distribution were observed for various metabolic processes, including oxidative stress, iron metabolism, protein translation and the tricarboxylic acid cycle. This is accompanied by reduced abundance of two karyopherin proteins, suggestive of reduced nuclear import. We propose that altered nucleo-cytoplasmic trafficking plays a key role in the regulation of cell cycle arrest. The results increase understanding of the mechanisms underlying maintenance of the DNA replication origin activation checkpoint and are consistent with our proposal that cell cycle arrest is an actively maintained process that appears to be distributed over various subcellular locations.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteômica , Origem de Replicação , Frações Subcelulares/metabolismo , Linhagem Celular , Cromatografia Líquida , Primers do DNA , Humanos , Interferência de RNA , Espectrometria de Massas em Tandem
11.
J Pathol ; 226(2): 352-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21990031

RESUMO

Deregulation of the cell cycle underlies the aberrant cell proliferation that characterizes cancer and loss of cell cycle checkpoint control promotes genetic instability. During the past two decades, cancer genetics has shown that hyperactivating mutations in growth signalling networks, coupled to loss of function of tumour suppressor proteins, drives oncogenic proliferation. Gene expression profiling of these complex and redundant mitogenic pathways to identify prognostic and predictive signatures and their therapeutic targeting has, however, proved challenging. The cell cycle machinery, which acts as an integration point for information transduced through upstream signalling networks, represents an alternative target for diagnostic and therapeutic interventions. Analysis of the DNA replication initiation machinery and mitotic engine proteins in human tissues is now leading to the identification of novel biomarkers for cancer detection and prognostication, and is providing target validation for cell cycle-directed therapies.


Assuntos
Ciclo Celular/fisiologia , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/fisiologia , Detecção Precoce de Câncer , Geminina , Humanos , Neoplasias/tratamento farmacológico , Fosfoproteínas Fosfatases/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia , Resultado do Tratamento
12.
Am J Pathol ; 177(4): 2034-45, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724597

RESUMO

Treatment options for triple-receptor negative (ER-/PR-/Her2-) and Her2-overexpressing (ER-/PR-/Her2+) breast cancers with acquired or de novo resistance are limited, and metastatic disease remains incurable. Targeting of growth signaling networks is often constrained by pathway redundancy or growth-independent cancer cell cycles. The cell-cycle protein Cdc7 regulates S phase by promoting DNA replication. This essential kinase acts as a convergence point for upstream growth signaling pathways and is therefore an attractive therapeutic target. We show that increased Cdc7 expression during mammary tumorigenesis is linked to Her2-overexpressing and triple-negative subtypes, accelerated cell cycle progression (P < 0.001), arrested tumor differentiation (P < 0.001), genomic instability (P = 0.019), increasing NPI score (P < 0.001), and reduced disease-free survival (HR = 1.98 [95% CI: 1.27-3.10]; P = 0.003), thus implicating its deregulation in the development of aggressive disease. Targeting Cdc7 with RNAi, we demonstrate that p53-mutant Her2-overexpressing and triple-negative breast cancer cell lines undergo an abortive S phase and apoptotic cell death due to loss of a p53-dependent Cdc7-inhibition checkpoint. In contrast, untransformed breast epithelial cells arrest in G1, remain viable, and are able to resume cell proliferation on recovery of Cdc7 kinase activity. Thus, Cdc7 appears to represent a potent and highly specific anticancer target in Her2-overexpressing and triple-negative breast cancers. Emerging Cdc7 kinase inhibitors may therefore significantly broaden the therapeutic armamentarium for treatment of the aggressive p53-mutant breast cancer subtypes identified in this study.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Genes p53/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fase S/fisiologia , Apoptose , Western Blotting , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
13.
J Proteome Res ; 9(10): 5445-60, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20707412

RESUMO

An origin activation checkpoint has recently been discovered in the G1 phase of the mitotic cell cycle, which can be triggered by loss of DNA replication initiation factors such as the Cdc7 kinase. Insufficient levels of Cdc7 activate cell cycle arrest in normal cells, whereas cancer cells appear to lack this checkpoint response, do not arrest, and proceed with an abortive S phase, leading to cell death. The differential response between normal and tumor cells at this checkpoint has led to widespread interest in the development of pharmacological Cdc7 inhibitors as novel anticancer agents. We have used RNAi against Cdc7 in combination with SILAC-based high resolution MS proteomics to investigate the cellular mechanisms underlying the maintenance of the origin activation checkpoint in normal human diploid fibroblasts. Bioinformatics analysis identified clear changes in wide-ranging biological processes including altered cellular energetic flux, moderate stress response, reduced proliferative capacity, and a spatially distributed response across the mitochondria, lysosomes, and the cell surface. These results provide a quantitative overview of the processes involved in maintenance of the arrested state, show that this phenotype involves active rather than passive cellular adaptation, and highlight a diverse set of proteins responsible for cell cycle arrest and ultimately for promotion of cellular survival. We propose that the Cdc7-depleted proteome maintains cellular arrest by initiating a dynamic quiescence-like response and that the complexities of this phenotype will have important implications for the continued development of promising Cdc7-targeted cancer therapies.


Assuntos
Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Proteômica/métodos , Origem de Replicação/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Immunoblotting , Espectrometria de Massas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA
14.
Histopathology ; 57(1): 1-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20579130

RESUMO

Cancer biomarkers provide an opportunity to diagnose tumours earlier and with greater accuracy. They can also identify those patients most at risk of disease recurrence and predict which tumours will respond to different therapeutic approaches. Such biomarkers will be especially useful in the diagnosis and management of bladder cancer. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. These are not only expensive, but also highly subjective investigations and reveal little about the underlying molecular characteristics of the tumour. In recent years numerous diagnostic and prognostic biomarkers of bladder cancer have been identified. Two separate approaches to biomarker discovery have been employed. The first is hypothesis-driven and focuses upon proteins involved in molecular pathways known to be implicated in tumorigenesis. An alternative approach has been to study the global expression of genes (so-called 'genomics') looking for characteristic signatures associated with disease outcomes. In this review we summarize the current state of biomarker development in this field, and examine why so few have made the successful transition into the clinic. Finally, we introduce a novel approach to biomarker development utilizing components of the DNA replication licensing machinery.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Bexiga Urinária/química , Neoplasias da Bexiga Urinária/diagnóstico , Algoritmos , Antígenos de Neoplasias/urina , Apoptose , Biomarcadores Tumorais/urina , Ciclo Celular , Proteínas de Ciclo Celular/análise , Ciclinas/análise , Citodiagnóstico/métodos , Replicação do DNA , Perfilação da Expressão Gênica , Genes p53 , Humanos , Hibridização in Situ Fluorescente , Antígeno Ki-67/análise , Sistema de Sinalização das MAP Quinases/genética , Proteínas Nucleares/urina , Prognóstico , Neoplasias da Bexiga Urinária/genética
15.
Clin Cancer Res ; 15(7): 2417-25, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19318489

RESUMO

PURPOSE: There is a lack of prognostic and predictive biomarkers in epithelial ovarian carcinoma, and the targeting of oncogenic signaling pathways has had limited impact on patient survival in this highly heterogeneous disease. The origin licensing machinery, which renders chromosomes competent for DNA replication, acts as a convergence point for upstream signaling pathways. We tested the hypothesis that Cdc7 kinase, a core component of the licensing machinery, is predictive of clinical outcome and may constitute a novel therapeutic target in epithelial ovarian carcinoma. EXPERIMENTAL DESIGN: A total of 143 cases of ovarian cancer and 5 cases of normal ovary were analyzed for Cdc7 protein expression dynamics and clinicopathologic features. To assess the therapeutic potential of Cdc7, expression was down-regulated by RNA interference in SKOV-3 and Caov-3 ovarian cancer cells. RESULTS: Increased Cdc7 protein levels were significantly associated with arrested tumor differentiation (P = 0.004), advanced clinical stage (P = 0.01), genomic instability (P < 0.001), and accelerated cell cycle progression. Multivariate analysis shows that Cdc7 predicts disease-free survival independent of patient age, tumor grade and stage (hazard ratio, 2.03; confidence interval, 1.53-2.68; P < 0.001), with the hazard ratio for relapse increasing to 10.90 (confidence interval, 4.07-29.17) for the stages 3 to 4/upper Cdc7 tertile group relative to stages 1 to 2/lower Cdc7 tertile tumors. In SKOV-3 and Caov-3 cells, Cdc7 siRNA knockdown triggered high levels of apoptosis, whereas untransformed cells arrest in G(1) phase and remain viable. CONCLUSIONS: Our findings show that Cdc7 kinase predicts survival and is a potent anticancer target in epithelial ovarian carcinoma, highlighting its potential as a predictor of susceptibility to small molecule kinase inhibitors currently in development.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma/mortalidade , Proteínas de Ciclo Celular/metabolismo , Neoplasias Ovarianas/mortalidade , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Biomarcadores Tumorais/análise , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Ciclo Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Instabilidade Genômica , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ovário/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Análise de Sobrevida
16.
J Virol ; 82(18): 9056-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18632869

RESUMO

Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E4 in cells is known to activate cell cycle checkpoints, inhibiting G(2)-to-M transition of the cell cycle and also suppressing entry of cells into S phase. We report here that the HPV1 E4 protein, in the presence of a soluble form of the replication-licensing factor (RLF) Cdc6, inhibits initiation of cellular DNA replication in a mammalian cell-free DNA replication system. Chromatin-binding studies show that E4 blocks replication initiation in vitro by preventing loading of the RLFs Mcm2 and Mcm7 onto chromatin. HPV1 E4-mediated replication inhibition in vitro and suppression of entry of HPV1 E4-expressing cells into S phase are both abrogated upon alanine replacement of arginine 45 in the full-length E4 protein (E1;E4), implying that these two HPV1 E4 functions are linked. We hypothesize that HPV1 E4 inhibits competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by suppressing licensing of cellular replication origins, thus modifying the phenotype of the infected cell in favor of viral genome amplification.


Assuntos
Motivos de Aminoácidos , Arginina/química , Replicação do DNA , Mupapillomavirus/patogenicidade , Proteínas de Fusão Oncogênica/química , Proteínas Oncogênicas Virais/fisiologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA/biossíntese , Células HeLa , Humanos , Camundongos , Mupapillomavirus/metabolismo , Células NIH 3T3 , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Fase S , Spodoptera , Proteínas Virais/química , Xenopus laevis
17.
Nat Struct Mol Biol ; 11(10): 1021-2, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15378034

RESUMO

The origin licensing repressor geminin is a unique bifunctional protein providing a molecular link between cellular proliferation, differentiation and genomic stability. Here we report the first molecular structure of human geminin, determined by EM and image processing at a resolution of 17.5 A. The geminin molecule is a tetramer formed by two dimers with monomers interacting via coiled-coil domains. The unusual structural organization of geminin provides molecular insight into its bifunctional nature.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Geminina , Humanos , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
18.
Chembiochem ; 9(11): 1787-96, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18604831

RESUMO

The transducing ability of the third helix of transcription factor homeodomains is effectively mimicked by a biphenyl system displaying guanidine groups. The biphenyl class of small molecule carriers (SMoCs) can carry biomolecules into a wide variety of cell types. A "combinatorial" approach to the synthesis of SMoCs is described using sequential Pd(0) coupling chemistry to assemble the molecules from highly functionalized building blocks. SMoCs coupled to the DNA licensing repressor protein geminin can inhibit DNA replication in vitro. We conducted a structure-activity investigation utilizing a range of SMoC-geminin conjugates and demonstrate that both electrostatic and structural features are important for efficient uptake and functional activity. The best analogue was more efficient than either (Arg)(4) or (Arg)(8) linked to geminin. Effective inhibition of DNA synthesis was achieved in fibroblasts and osteosarcoma cell lines.


Assuntos
Materiais Biomiméticos/síntese química , Materiais Biomiméticos/farmacologia , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacologia , Células/metabolismo , Paládio/química , Arginina/química , Benzeno/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , Citometria de Fluxo , Humanos , Hidrocarbonetos Halogenados/química , Inibidores da Síntese de Ácido Nucleico/síntese química , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Eletricidade Estática , Relação Estrutura-Atividade
19.
Clin Cancer Res ; 13(20): 6153-61, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17947481

RESUMO

PURPOSE: DNA replication licensing factors and Aurora kinases play critical roles in maintaining genomic integrity. We used multiparameter analyses of these cell cycle regulatory proteins to investigate their role in the progression of epithelial ovarian carcinoma (EOC). EXPERIMENTAL DESIGN: In a cohort of 143 patients, we linked the protein expression profiles of the proliferation marker Ki67, the replication licensing factors Mcm2 and geminin, and the Aurora A and B kinases to tumor DNA ploidy status and clinical outcome. RESULTS: Ki67, Mcm2, geminin, and Aurora A and B are significantly associated with tumor grade and ploidy status (P < 0.0001). Aurora A and its substrate H3S10ph are also significantly associated with Federation of International Obstetricians and Gynecologists tumor stage (P = 0.006 and P = 0.002, respectively). Aurora A and tumor ploidy status are predictive of disease-free survival in this cohort [hazard ratio (HR), 1.29; 95% confidence intervals (95% CI), 1.06-1.58, P = 0.01 and HR, 1.80 (1.05-3.08), P = 0.03, respectively], with Aurora A of particular prognostic importance in early stage disease [HR, 1.72 (1.19-2.48), P = 0.004 for disease-free survival and HR, 1.81 (1.14-2.87), P = 0.01 for overall survival]. CONCLUSIONS: Our data show that Ki67, Mcm2, geminin and Aurora A and B can be used as an adjunct to conventional prognostic indicators and as an aid to develop a tumor progression model for EOC. Dysregulation of Aurora A seems to be an early event in EOC with a key role in tumor progression. In view of present drug development programs for specific Aurora kinase inhibitors, our findings have important implications for the use of Aurora A as a biomarker and as a potential therapeutic target.


Assuntos
Aneuploidia , Replicação do DNA , DNA/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aurora Quinases , Ciclo Celular , Proteínas de Ciclo Celular/genética , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Geminina , Células HeLa , Humanos , Antígeno Ki-67/biossíntese , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/genética , Neoplasias Ovarianas/mortalidade , Proteínas Serina-Treonina Quinases/metabolismo
20.
Mol Cell Biol ; 23(7): 2351-61, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12640120

RESUMO

Initiation of T-lymphocyte-mediated immune responses involves two cellular processes: entry into the cell cycle (G(0)-->G(1)) for clonal proliferation and coordinated changes in surface and secreted molecules that mediate effector functions. However, a point during G(0)-->G(1) beyond which T cells are committed to enter the cell cycle has not been defined. We define here a G(0)-->G(1) commitment point that occurs 3 to 5 h after CD3 and CD28 stimulation of human CD4 or CD8 T cells. Transition through this point requires cdk6/4-cyclin D, since inhibition with TAT-p16(INK4A) during the first 3 to 5 h prevents cell cycle entry and maintains both naive and memory T cells in G(0). Transition through the G(0)-->G(1) commitment point is also necessary for T cells to increase in size, i.e., to enter the cellular growth cycle. However, transition through this point is not required for the induction of effector functions. These can be initiated while cells are maintained in G(0) with TAT-p16(INK4A). We have termed this quiescent, activated state G(0(A)). Our data provide proof of the principle that entry of T cells into the cell cycle and cellular growth cycles are coupled at the G(0)-->G(1) commitment point but that these processes can be uncoupled from the early expression of molecules of effector functions.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Ciclo Celular/fisiologia , Anticorpos/farmacologia , Antígenos CD28/metabolismo , Complexo CD3/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Separação Celular , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidores Enzimáticos/farmacologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Produtos do Gene tat/genética , Humanos , Interleucina-2/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/fisiologia , Mitógenos/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/fisiologia , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA