Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 463(2): 249-56, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25074286

RESUMO

PIGF is a protein involved in the ethanolamine phosphate (EtNP) transfer steps of glycosylphosphatidylinositol (GPI) biosynthesis. PIGF forms a heterodimer with either PIGG or PIGO, two enzymes that transfer an EtNP to the second or third mannoses of GPI respectively. Heterodimer formation is essential for stable and regulated expression of PIGO and PIGG, but the functional significance of PIGF remains obscure. In the present study, we show that PIGF binds to PIGO and PIGG through distinct molecular domains. Strikingly, C-terminal half of PIGF was sufficient for its binding to PIGO and PIGG and yet this truncation mutant could not complement the PIGF defective mutant cells, suggesting that heterodimer formation is not sufficient for PIGF function. Furthermore, we identified a highly conserved motif in PIGF and demonstrated that the motif is not involved in binding to PIGO or PIGG, but critical for its function. Finally, we identified a PIGF homologue from Trypanosoma brucei and showed that it binds specifically to the T. brucei PIGO homologue. These data together support the notion that PIGF plays a critical and evolutionary conserved role in the ethanolamine-phosphate transfer-step, which cannot be explained by its previously ascribed binding/stabilizing function. Potential roles of PIGF in GPI biosynthesis are discussed.


Assuntos
Etanolaminas/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Evolução Molecular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
2.
J Biol Chem ; 283(23): 16147-61, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18381290

RESUMO

A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.


Assuntos
Nucleotidiltransferases/biossíntese , Modificação Traducional de Proteínas/fisiologia , Proteínas de Protozoários/biossíntese , Trypanosoma brucei brucei/enzimologia , Uridina Difosfato N-Acetilglicosamina/biossíntese , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Animais , Glicosilação , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Lectinas de Plantas/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma brucei brucei/genética , Uridina Difosfato N-Acetilglicosamina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA