Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Zool ; 18(1): 10, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750400

RESUMO

BACKGROUND: The yellow fever mosquito, Aedes aegypti, is the principal vector of medically-important infectious viruses that cause severe illness such as dengue fever, yellow fever and Zika. The transmission potential of mosquitoes for these arboviruses is largely shaped by their life history traits, such as size, survival and fecundity. These life history traits, to some degree, depend on environmental conditions, such as larval and adult nutrition (e.g., nectar availability). Both these types of nutrition are known to affect the energetic reserves and life history traits of adults, but whether and how nutrition obtained during larval and adult stages have an interactive influence on mosquito life history traits remains largely unknown. RESULTS: Here, we experimentally manipulated mosquito diets to create two nutritional levels at larval and adult stages, that is, a high or low amount of larval food (HL or LL) during larval stage, and a good and poor adult food (GA or PA, represents normal or weak concentration of sucrose) during adult stage. We then compared the size, survival and fecundity of female mosquitoes reared from these nutritional regimes. We found that larval and adult nutrition affected size and survival, respectively, without interactions, while both larval and adult nutrition influenced fecundity. There was a positive relationship between fecundity and size. In addition, this positive relationship was not affected by nutrition. CONCLUSIONS: These findings highlight how larval and adult nutrition differentially influence female mosquito life history traits, suggesting that studies evaluating nutritional effects on vectorial capacity traits should account for environmental variation across life stages.

2.
Orig Life Evol Biosph ; 51(3): 185-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279769

RESUMO

How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.


Assuntos
Meteoroides , Fósforo , Planeta Terra , Fosfatos , Fosfolipídeos
3.
J Theor Biol ; 490: 110161, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31953137

RESUMO

Effective public health measures must balance potentially conflicting demands from populations they serve. In the case of infectious disease risks from mosquito-borne infections, such as Zika virus, public concern about the pathogen may be counterbalanced by public concern about environmental contamination from chemical agents used for vector control. Here we introduce a generic framework for modeling how the spread of an infectious pathogen might lead to varying public perceptions, and therefore tolerance, of both disease risk and pesticide use. We consider how these dynamics might impact the spread of a vector-borne disease. We tailor and parameterize our model for direct application to Zika virus as spread by Aedes aegypti mosquitoes, though the framework itself has broad applicability to any arboviral infection. We demonstrate how public risk perception of both disease and pesticides may drastically impact the spread of a mosquito-borne disease in a susceptible population. We conclude that models hoping to inform public health decision making about how best to mitigate arboviral disease risks should explicitly consider the potential public demand for, or rejection of, chemical control of mosquito populations.


Assuntos
Aedes , Infecções por Arbovirus , Infecção por Zika virus , Zika virus , Animais , Infecções por Arbovirus/epidemiologia , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle
4.
Ecol Appl ; 29(3): e01856, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681219

RESUMO

Recent epidemics of mosquito-borne dengue and Zika viruses demonstrate the urgent need for effective measures to control these diseases. The best method currently available to prevent or reduce the size of outbreaks is to reduce the abundance of their mosquito vectors, but there is little consensus on which mechanisms of control are most effective, or when and where they should be implemented. Although the optimal methods are likely context dependent, broadly applicable strategies for mosquito control, such as how to distribute limited resources across a landscape in times of high epidemic risk, can mitigate (re)emerging outbreaks. We used mathematical simulations to examine how the spatial distribution of larval mosquito control affects the size of disease outbreaks, and how mosquito metapopulation dynamics and demography might impact the efficacy of different spatial distributions of control. We found that the birth rate and mechanism of density-dependent regulation of mosquito populations affected the average outbreak size across all control distributions. These factors also determined whether control distributions favoring the interior or the edges of the landscape most effectively reduced human infections. Thus, understanding local mosquito population regulation and dispersion can lead to more effective control strategies.


Assuntos
Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Controle de Mosquitos , Mosquitos Vetores , Dinâmica Populacional
5.
Malar J ; 17(1): 257, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986723

RESUMO

BACKGROUND: Insecticide-treated bed nets (ITNs) have played a large role in reducing the burden of malaria. There is concern however regarding the potential of the mass distributions and use of ITNs to select for insecticide and behavioural resistance in mosquito populations. A key feature of the vectorial capacity of the major sub-Saharan African malaria vector Anopheles gambiae sensu stricto (s.s.) is its tendency to feed almost exclusively on humans. Here, an evolutionary model is used to investigate the potential for ITNs to select for increased zoophily in this highly anthropophilic species and how this is influenced by ecological and operational conditions. RESULTS: The evolution of a single trait, namely the tendency to accept cattle as hosts, is modelled in mosquito populations which initially only bite humans. Thus, the conditions under which a resource specialist would broaden its diet and become a generalist are investigated. The results indicate that in the absence of insecticide-treated nets, host specialization in mosquitoes is either driven toward human specialization (when humans are more abundant than alternative hosts), or displays evolutionary bistability. The latter implies that the evolutionary endpoint relies on the initial trait value of the population. Bed nets select for increased zoophily while in use. When ITNs are removed, whether or not the population reverts to anthropophagic or zoophagic behaviour depends on whether the intervention had been maintained sufficiently long to drive the population past the evolutionarily unstable point. CONCLUSIONS: The use of ITNs is likely to select for an increase in the biting preference for cattle. Bed nets may thus alter the population composition of major vector species in a manner that has positive epidemiological ramifications. Whether populations are set on a trajectory toward increased zoophily following the cessation of intense bed net usage in an area depends on the composition of host communities as well as operational conditions. This has potential implications for bed net campaigns, particularly with an eye toward scaling down interventions following interruption of transmission. Further research on malaria mosquito feeding behaviour is warranted to explore the conditions under which such adaptive shifts may actually occur in the field.


Assuntos
Anopheles/fisiologia , Evolução Biológica , Cadeia Alimentar , Mosquiteiros Tratados com Inseticida , Mosquitos Vetores/fisiologia , Seleção Genética , África Subsaariana , Animais , Anopheles/genética , Comportamento Alimentar , Humanos , Malária , Modelos Genéticos , Mosquitos Vetores/genética
6.
J Environ Qual ; 47(1): 79-87, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29415099

RESUMO

The estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale. The variability in wind conditions further complicates the simulation of the environmental processes leading to pesticide spray drift contributions to surface water. This study investigates the use of the Soil Water Assessment Tool (SWAT) for predicting concentrations of malathion (O,O-deimethyl thiophosphate of diethyl mercaptosuccinate) in a flowing water body when exposure is a result of off-target spray drift, and assesses the model's performance using a parameterization typical of a screening-level regulatory assessment. Six SWAT parameterizations, each including incrementally more site-specific data, are then evaluated to quantify changes in model performance. Results indicate that the SWAT model is an appropriate tool for simulating watershed scale concentrations of pesticides resulting from off-target spray drift deposition. The model predictions are significantly more accurate when the inputs and assumptions accurately reflect application practices and environmental conditions. Inclusion of detailed wind data had the most significant impact on improving model-predicted EECs in comparison to observed concentrations.


Assuntos
Agricultura , Praguicidas/análise , Poluentes Químicos da Água/análise , Modelos Teóricos , Medição de Risco , Rios , Vento
7.
PLoS Comput Biol ; 11(10): e1004514, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26426854

RESUMO

The gambiense form of sleeping sickness is a neglected tropical disease, which is presumed to be anthroponotic. However, the parasite persists in human populations at levels of considerable rarity and as such the existence of animal reservoirs has been posited. Clarifying the impact of animal host reservoirs on the feasibility of interrupting sleeping sickness transmission through interventions is a matter of urgency. We developed a mathematical model allowing for heterogeneous exposure of humans to tsetse, with animal populations that differed in their ability to transmit infections, to investigate the effectiveness of two established techniques, screening and treatment of at-risk populations, and vector control. Importantly, under both assumptions, an integrated approach of human screening and vector control was supported in high transmission areas. However, increasing the intensity of vector control was more likely to eliminate transmission, while increasing the intensity of human screening reduced the time to elimination. Non-human animal hosts played important, but different roles in HAT transmission, depending on whether or not they contributed as reservoirs. If they did not serve as reservoirs, sensitivity analyses suggested their attractiveness may instead function as a sink for tsetse bites. These outcomes highlight the importance of understanding the ecological and environmental context of sleeping sickness in optimizing integrated interventions, particularly for moderate and low transmission intensity settings.


Assuntos
Reservatórios de Doenças/parasitologia , Interações Hospedeiro-Patógeno , Mordeduras e Picadas de Insetos/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé , Animais , Simulação por Computador , Humanos , Modelos Estatísticos , Medição de Risco/métodos , Trypanosoma brucei gambiense , Tripanossomíase Africana/prevenção & controle
8.
Front Microbiol ; 15: 1332970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404602

RESUMO

The vectorial capacity of mosquitoes, which influences the dynamics of vector-borne disease transmission, is intricately linked to mosquito abundance and the composition and diversity of their associated microbiomes. However, the influence of environmental factors on mosquito populations and microbiome diversity remains underexplored. Here we examined the effects of seasonality and developed land cover on Culex mosquito abundance and bacterial diversity. Biweekly field sampling of female Culex mosquitoes was conducted using gravid and CDC light traps, spanning summer to autumn across varying developed land cover levels in two urban areas in Central Illinois. Mosquito abundance was assessed by the number of mosquitoes captured per trap night and compared across seasons and developed levels. The mean mosquito abundance for gravid and light traps was 12.96 ± 2.15 and 7.67 ± 1.44, respectively. Notably, higher levels of developed land cover exhibited higher Culex abundance than the low level for light traps, but no significant difference was found between summer and early autumn. In gravid traps, no significant differences were detected across seasons or developed levels. Microbial analysis of the mosquito microbiome revealed that Proteobacteria and Wolbachia, with a mean relative abundance of 80.77 and 52.66% respectively, were identified as the most dominant bacterial phylum and genus. Their relative abundance remained consistent across seasons and developed land cover levels, with negligible variations. Alpha diversity, as measured by observed species, Chao1, Shannon, and Simpson, showed slightly higher values in early-autumn compared to late-summer. A notable pattern of bacterial diversity, as indicated by all four diversity indexes, is evident across varying levels of land development. Significantly, high or intermediate developed levels consistently showed reduced alpha diversity when compared to the lower level. This underscores the pronounced impact of anthropogenic ecological disturbances in shaping mosquito microbiomes. Beta diversity analysis revealed no significant dissimilarities in bacterial community composition across seasons and developed levels, although some separation was noted among different levels of developed land cover. These findings highlight the significant role of environmental factors in shaping mosquito abundance and their associated microbiomes, with potential implications for the vectorial capacity in the transmission of vector-borne diseases.

9.
PLoS One ; 19(7): e0307922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074126

RESUMO

Although both clinical data and animal models suggest cardiovascular benefits following administration of Dipeptidyl Peptidase 4 (DPP-4) inhibitors, the underlying mechanisms remain unclear. We therefore sought to evaluate the effect of the DPP-4 inhibitor sitagliptin on myocardial fibrosis, and insulin signaling in chronic myocardial ischemia using a swine model. An ameroid constrictor placement on the left coronary circumflex artery of thirteen Yorkshire swine to model chronic myocardial ischemia. After two weeks of recovery, swine were assigned to one of two groups: control (CON, n = 8), or sitagliptin 100mg daily (SIT, n = 5). After 5 weeks of treatment, the swine underwent terminal harvest with collection of myocardial tissue. Fibrosis was quantified using Masson's trichrome. Protein expression was quantified by Immunoblotting. Trichrome stain demonstrated a significant decrease in perivascular and interstitial fibrosis in the SIT group relative to CON (all p<0.05). Immunoblot showed a reduction in Jak2, the pSTAT3 to STAT 3 Ratio, pSMAD 2/3, and SMAD 2/3, and an increase in STAT 3 in the SIT group relative to CON (all p<0.05). SIT treatment was associated with increased expression of insulin receptor one and decreased expression of makers for insulin resistance, including phospho-PKC- alpha, RBP-4, SIRT1, and PI3K (p<0.05). Sitagliptin results in a reduction in perivascular and interstitial fibrosis and increased insulin sensitivity in chronically ischemic swine myocardium. This likely contributes to the improved cardiovascular outcomes seen with DPP-4 inhibitors.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Modelos Animais de Doenças , Fibrose , Insulina , Isquemia Miocárdica , Miocárdio , Transdução de Sinais , Fosfato de Sitagliptina , Animais , Fosfato de Sitagliptina/farmacologia , Fosfato de Sitagliptina/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Insulina/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Suínos , Miocárdio/metabolismo , Miocárdio/patologia , Doença Crônica
10.
Artigo em Inglês | MEDLINE | ID: mdl-38879117

RESUMO

INTRODUCTION: Sodium-glucose cotransporter-2 inhibitors are antidiabetic medications that have been shown to decrease cardiovascular events and heart failure-related mortality in clinical studies. We attempt to examine the complex interplay between metabolic syndrome and the sodium-glucose cotransporter-2 inhibitor canagliflozin (CAN) in a clinically relevant model of chronic myocardial ischemia. METHODS: Twenty-one Yorkshire swine were fed a high-fat diet starting at 6 weeks of age to induce metabolic syndrome. At 11 weeks, all underwent placement of an ameroid constrictor around the left circumflex coronary artery to induce chronic myocardial ischemia. After 2 weeks, swine received either control (CON) (n = 11) or CAN 300 mg by mouth daily (n = 10) for 5 weeks, whereupon all underwent terminal harvest. RESULTS: There was a significant increase in cardiac output and heart rate with a decrease in pulse pressure in the CAN group compared with CON (all P values < .05). The CAN group had a significant increase in capillary density (P = .02). There was no change in myocardial perfusion or arteriolar density. CAN induced a significant increase in markers of angiogenesis, including Phospho-endothelial nitric oxide synthase, Endothelial nitric oxide synthase, vascular endothelial growth factor receptor-1, heat shock protein 70, and extracellular signal-regulated kinases (all P values < .05), plausibly resulting in capillary angiogenesis. CONCLUSIONS: CAN treatment leads to a significant increase in capillary density and augmented cardiac function in a swine model of chronic myocardial ischemia in the setting of metabolic syndrome. This work further elucidates the mechanism of sodium-glucose cotransporter-2 inhibitors in patients with cardiac disease; however, more studies are needed to determine if this increase in capillary density plays a role in the improvements seen in clinical studies.

11.
PLoS One ; 19(2): e0297102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377079

RESUMO

BACKGROUND: Quantifying movement behaviours over 24-hours enables the combined effects of and inter-relations between sleep, sedentary time and physical activity (PA) to be understood. This is the first study describing 24-hour movement behaviours in school-aged children and adolescents in South-East Asia. Further aims were to investigate between-participant differences in movement behaviours by demographic characteristics and timing of data collection during Ramadan and COVID-19 restrictions. METHODS: Data came from the South-East Asia Community Observatory health surveillance cohort, 2021-2022. Children aged 7-18 years within selected households in Segamat, Malaysia wore an Axivity AX6 accelerometer on their wrist for 24 hours/day over 7 days, completed the PAQ-C questionnaire, and demographic information was obtained. Accelerometer data was processed using GGIR to determine time spent asleep, inactive, in light-intensity PA (LPA) and moderate-to-vigorous PA (MVPA). Differences in accelerometer-measured PA by demographic characteristics (sex, age, ethnicity, socioeconomic group) were explored using univariate linear regression. Differences between data collected during vs outside Ramadan or during vs after COVID-19 restrictions, were investigated through univariate and multiple linear regressions, adjusted for age, sex and ethnicity. RESULTS: The 491 participants providing accelerometer data spent 8.2 (95% confidence interval (CI) = 7.9-8.4) hours/day asleep, 12.4 (95% CI = 12.2-12.7) hours/day inactive, 2.8 (95% CI = 2.7-2.9) hours/day in LPA, and 33.0 (95% CI = 31.0-35.1) minutes/day in MVPA. Greater PA and less time inactive were observed in boys vs girls, children vs adolescents, Indian and Chinese vs Malay children and higher income vs lower income households. Data collection during Ramadan or during COVID-19 restrictions were not associated with MVPA engagement after adjustment for demographic characteristics. CONCLUSIONS: Demographic characteristics remained the strongest correlates of accelerometer-measured 24-hour movement behaviours in Malaysian children and adolescents. Future studies should seek to understand why predominantly girls, adolescents and children from Malay ethnicities have particularly low movement behaviours within Malaysia.


Assuntos
COVID-19 , Exercício Físico , Masculino , Criança , Feminino , Humanos , Adolescente , Estudos Transversais , Inquéritos e Questionários , Acelerometria , COVID-19/epidemiologia
12.
Commun Biol ; 6(1): 1123, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932414

RESUMO

Diet-induced nutritional stress can influence pathogen transmission potential in mosquitoes by impacting life history traits, infection susceptibility, and immunity. To investigate these effects, we manipulate mosquito diets at larval and adult stages, creating two nutritional levels (low and normal), and expose adults to dengue virus (DENV). We observe that egg number is reduced by nutritional stress at both stages and viral exposure separately and jointly, while the likelihood of laying eggs is exclusively influenced by adult nutritional stress. Adult nutritional stress alone shortens survival, while any pairwise combination between both-stage stress and viral exposure have a synergistic effect. Additionally, adult nutritional stress increases susceptibility to DENV infection, while larval nutritional stress likely has a similar effect operating via smaller body size. Furthermore, adult nutritional stress negatively impacts viral titers in infected mosquitoes; however, some survive and show increased titers over time. The immune response to DENV infection is overall suppressed by larval and adult nutritional stress, with specific genes related to Toll, JAK-STAT, and Imd immune signaling pathways, and antimicrobial peptides being downregulated. Our findings underscore the importance of nutritional stress in shaping mosquito traits, infection outcomes, and immune responses, all of which impact the vectorial capacity for DENV transmission.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Vírus da Dengue/fisiologia , Larva , Peptídeos Antimicrobianos
13.
Parasit Vectors ; 16(1): 434, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993953

RESUMO

BACKGROUND: Estimating arbovirus transmission potential requires a mechanistic understanding of how environmental factors influence the expression of adult mosquito traits. While preimaginal exposure to environmental factors can have profound effects on adult traits, tracking and predicting these effects remains challenging. METHODS: Using Aedes albopictus and a structural equation modeling approach, we explored how larval nutrition and temperature jointly affect development rate and success, female body size, and whether these metrics capture carry-over effects on adult female longevity. Additionally, we investigated how larval diet and temperature affect the baseline expression of 10 immune genes. RESULTS: We found that larval development success was primarily determined by diet, while temperature and diet both affected development rate and female body size. Under a low larval diet, pupal wet weight and wing length both declined with increasing temperature. In contrast, responses of the two morphometric measures to rearing temperature diverged when females were provided higher larval nutrition, with pupal wet weight increasing and wing length decreasing at higher temperatures. Our analyses also revealed opposing relationships between adult female lifespan and the two morphometric measures, with wing length having a positive association with longevity and pupal weight a negative association. Larval diet indirectly affected adult longevity, and the time to pupation was negatively correlated with longevity. The expression of eight immune genes from the toll, JAK-STAT and Imd pathways was enhanced in mosquitoes with higher nutrition. CONCLUSIONS: Our results highlight deficiencies from using a single body size measure to capture carry-over effects on adult traits. Further studies of larval development rate under varying environmental conditions and its potential for tracking carry-over effects on vectorial capacity are warranted.


Assuntos
Aedes , Longevidade , Feminino , Animais , Temperatura , Larva/fisiologia , Dieta , Aedes/fisiologia , Tamanho Corporal
14.
Parasit Vectors ; 16(1): 2, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593496

RESUMO

BACKGROUND: West Nile virus (WNV), primarily vectored by mosquitoes of the genus Culex, is the most important mosquito-borne pathogen in North America, having infected thousands of humans and countless wildlife since its arrival in the USA in 1999. In locations with dedicated mosquito control programs, surveillance methods often rely on frequent testing of mosquitoes collected in a network of gravid traps (GTs) and CO2-baited light traps (LTs). Traps specifically targeting oviposition-seeking (e.g. GTs) and host-seeking (e.g. LTs) mosquitoes are vulnerable to trap bias, and captured specimens are often damaged, making morphological identification difficult. METHODS: This study leverages an alternative mosquito collection method, the human landing catch (HLC), as a means to compare sampling of potential WNV vectors to traditional trapping methods. Human collectors exposed one limb for 15 min at crepuscular periods (5:00-8:30 am and 6:00-9:30 pm daily, the time when Culex species are most actively host-seeking) at each of 55 study sites in suburban Chicago, Illinois, for two summers (2018 and 2019). RESULTS: A total of 223 human-seeking mosquitoes were caught by HLC, of which 46 (20.6%) were mosquitoes of genus Culex. Of these 46 collected Culex specimens, 34 (73.9%) were Cx. salinarius, a potential WNV vector species not thought to be highly abundant in upper Midwest USA. Per trapping effort, GTs and LTs collected > 7.5-fold the number of individual Culex specimens than HLC efforts. CONCLUSIONS: The less commonly used HLC method provides important insight into the complement of human-biting mosquitoes in a region with consistent WNV epidemics. This study underscores the value of the HLC collection method as a complementary tool for surveillance to aid in WNV vector species characterization. However, given the added risk to the collector, novel mitigation methods or alternative approaches must be explored to incorporate HLC collections safely and strategically into control programs.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Feminino , Humanos , Mosquitos Vetores , Animais Selvagens , Controle de Mosquitos/métodos
15.
Malar J ; 11: 3, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217265

RESUMO

BACKGROUND: The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. METHODS: Females and males <1-day post-emergence were released in a mesocosm. Overnight they had access to either one or six Senna didymobotrya plants. Simultaneously they had access to a human blood host, either for 8 h or for only 30 min at dusk and dawn (the remainder of the night being excluded by an untreated bed net). In a third situation, the blood host was not present. All mosquitoes were collected in the morning. Their wing lengths, an indicator of pre-meal energetic state, were measured, and their meal choice was determined by the presence of midgut blood and of fructose. RESULTS: Female sugar feeding after emergence was facultative. When a blood host was accessible for 8 h per night, 92% contained blood, and only 3.7% contained sugar. Even with the use of a bed net, 78% managed to obtain a blood meal during the 30 min of accessibility at dusk or dawn, but 14% of females were now fructose-positive. In the absence of a blood host, and when either one or six plants were available, a total of 21.7% and 23.6% of females and 30.8% and 43.5% of males contained fructose, respectively. Feeding on both sugar and blood was more likely with bed net use and with greater plant abundance. Further, mosquitoes that fed on both resources were more often small and had taken a sugar meal earlier than the blood meal. The abundance of sugar hosts also affected the probability of sugar feeding by males and the amount of fructose obtained by both males and females. CONCLUSION: Even in an abundance of potential sugar sources, female An. gambiae appear to prefer a nearby human source of blood. However, the decision to take sugar was more likely if energy reserves were low. Results probably would differ if sugar hosts were more attractive or yielded larger sugar meals. The diversion of energetically deprived mosquitoes to sugar sources suggests a possible synergy between bed nets and sugar-based control methods.


Assuntos
Anopheles/fisiologia , Sangue/metabolismo , Vetores de Doenças , Mosquiteiros/estatística & dados numéricos , Desenvolvimento Vegetal , Néctar de Plantas/metabolismo , Animais , Tamanho Corporal , Comportamento Alimentar , Feminino , Humanos , Masculino , Equipamentos de Proteção
16.
J Med Entomol ; 59(5): 1625-1635, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35857653

RESUMO

In the United States, the Gulf Coast tick (Amblyomma maculatum Koch) is a species of growing medical and veterinary significance, serving as the primary vector of the pathogenic bacterium, Rickettsia parkeri (Rickettsiales: Rickettsiaceae), in humans and the apicomplexan parasite, Hepatozoon americanum, in canines. Ongoing reports of A. maculatum from locations outside its historically reported distribution in the southeastern United States suggest the possibility of current and continuing range expansion. Using an ecological niche modeling approach, we combined new occurrence records with high-resolution climate and land cover data to investigate environmental drivers of the current distribution of A. maculatum in the United States. We found that environmental suitability for A. maculatum varied regionally and was primarily driven by climatic factors such as annual temperature variation and seasonality of precipitation. We also found that presence of A. maculatum was associated with open habitat with minimal canopy cover. Our model predicts large areas beyond the current distribution of A. maculatum to be environmentally suitable, suggesting the possibility of future northward and westward range expansion. These predictions of environmental suitability may be used to identify areas at potential risk for establishment and to guide future surveillance of A. maculatum in the United States.


Assuntos
Eucoccidiida , Ixodidae , Rickettsia , Amblyomma , Animais , Vetores de Doenças , Cães , Humanos , Ixodidae/microbiologia , Sudeste dos Estados Unidos/epidemiologia
17.
Environ Entomol ; 51(3): 586-594, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35552675

RESUMO

The Asian tiger mosquito, Aedes albopictus (Skuse), is a public health threat because it can potentially transmit multiple pathogenic arboviruses, exhibits aggressive diurnal biting, and is highly invasive. As Ae. albopictus moved northward into the United States, the limits of expansion were predicted as locations with a mean January temperature warmer than -2.5°C. We postulated that the range of Ae. albopictus could exceed these temperature limits if eggs in diapause overwinter in tires that provide an insulating effect from extreme temperatures. Fifteen tires with Ae. albopictus and Aedes triseriatus (Say) eggs, a native cold hardy species, were placed outside at five locations along a latitudinal gradient in Wisconsin and Illinois during the winter of 2018-2019; notably, in January 2019, a regional arctic air event brought the lowest temperatures recorded in over 20 yr. External and internal tire temperatures were recorded at 3 hr intervals, and egg survival was recorded after six months. Aedes albopictus eggs survived only from tires at northernmost locations. The mean internal January temperature of tires that supported survival was -1.8°C, while externally the mean temperature was -5.3°C, indicating that tires provided an average of +3.5°C of insulation. Tires that supported egg survival also had over 100 mm of snow cover during January. In the absence of snow cover, tires across the study area provided an average +0.79°C [95% CI 0.34-1.11] insulation. This work provides strong argument for the inclusion of microhabitats in models of dispersal and establishment of Ae. albopictus and other vector species.


Assuntos
Aedes , Animais , Temperatura Baixa , Mosquitos Vetores , Estações do Ano , Neve , Estados Unidos
18.
J Med Entomol ; 58(5): 2006-2011, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34342359

RESUMO

Medical Entomology as a field is inherently global - thriving on international and interdisciplinary collaborations and affected dramatically by arthropod and pathogen invasions and introductions. This past year also will be remembered as the year in which the SARS-CoV-2 COVID-19 pandemic affected every part of our lives and professional activities and impacted (or changed, sometimes in good ways) our ability to collaborate and detect or respond to invasions. This incredible year is the backdrop for the 2020 Highlights in Medical Entomology. This article highlights the broad scope of approaches and disciplines represented in the 2020 published literature, ranging from sensory and chemical ecology, population genetics, impacts of human-mediated environmental change on vector ecology, life history and the evolution of vector behaviors, to the latest developments in vector surveillance and control.


Assuntos
Entomologia , Aedes , Animais , COVID-19/epidemiologia , Meio Ambiente , Humanos , Controle de Insetos , Insetos Vetores , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos
20.
J Med Entomol ; 58(4): 1849-1864, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33855433

RESUMO

In Illinois, between 1990 and 2017, tick-borne diseases in humans increased 10-fold, yet we have insufficient information on when and where people are exposed to vector ticks (Ixodida: Ixodidae). The aims of our research were to compare contributions of passive and active tick collection methods in determining establishment of ticks of public health concern and obtain information on tick distributions within Illinois. We used three surveillance strategies within the Illinois Tick Inventory Collaboration Network to gather information about the ticks of public health concern: 1) passive collection (voluntary submission by the public); 2) systematic collection (biweekly active surveillance); and 3) special collections (active collections in locations of special interest). Of collected adult and nymphal ticks, 436 were from passive collections, 142 from systematic collections, and 1,270 from special collections. Tick species distribution status changed in 36 counties. Our data provide noteworthy updates to distribution maps for use by public health agencies to develop prevention and control strategies. Additionally, the program built a network of collaborations and partnerships to support future tick surveillance efforts within Illinois and highlighted how the combination of the three surveillance strategies can be used to determine geographic spread of ticks, pinpoint locations in need of more surveillance, and help with long-term efforts that support phenology studies.


Assuntos
Monitoramento Epidemiológico , Ixodidae , Animais , Vetores Aracnídeos , Illinois/epidemiologia , Saúde Pública/métodos , Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA