Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7961): 564-573, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996872

RESUMO

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Assuntos
Infecções por Adenovirus Humanos , Genômica , Hepatite , Criança , Humanos , Doença Aguda/epidemiologia , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica , Hepatite/epidemiologia , Hepatite/imunologia , Hepatite/virologia , Imuno-Histoquímica , Fígado/imunologia , Fígado/virologia , Proteômica , Linfócitos T/imunologia
2.
Clin Infect Dis ; 75(11): 2016-2018, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35616095

RESUMO

The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is of public health concern in case of vaccine escape. Described are 3 patients with advanced human immunodeficiency virus (HIV)-1 and chronic SARS-CoV-2 infection in whom there is evidence of selection and persistence of novel mutations that are associated with increased transmissibility and immune escape.


Assuntos
COVID-19 , Doença Enxerto-Hospedeiro , HIV-1 , Humanos , SARS-CoV-2/genética , HIV-1/genética
3.
Clin Chem ; 68(1): 153-162, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34633030

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA quantities, measured by reverse transcription quantitative PCR (RT-qPCR), have been proposed to stratify clinical risk or determine analytical performance targets. We investigated reproducibility and how setting diagnostic cutoffs altered the clinical sensitivity of coronavirus disease 2019 (COVID-19) testing. METHODS: Quantitative SARS-CoV-2 RNA distributions [quantification cycle (Cq) and copies/mL] from more than 6000 patients from 3 clinical laboratories in United Kingdom, Belgium, and the Republic of Korea were analyzed. Impact of Cq cutoffs on clinical sensitivity was assessed. The June/July 2020 INSTAND external quality assessment scheme SARS-CoV-2 materials were used to estimate laboratory reported copies/mL and to estimate the variation in copies/mL for a given Cq. RESULTS: When the WHO-suggested Cq cutoff of 25 was applied, the clinical sensitivity dropped to about 16%. Clinical sensitivity also dropped to about 27% when a simulated limit of detection of 106 copies/mL was applied. The interlaboratory variation for a given Cq value was >1000 fold in copies/mL (99% CI). CONCLUSION: While RT-qPCR has been instrumental in the response to COVID-19, we recommend Cq (cycle threshold or crossing point) values not be used to set clinical cutoffs or diagnostic performance targets due to poor interlaboratory reproducibility; calibrated copy-based units (used elsewhere in virology) offer more reproducible alternatives. We also report a phenomenon where diagnostic performance may change relative to the effective reproduction number. Our findings indicate that the disparities between patient populations across time are an important consideration when evaluating or deploying diagnostic tests. This is especially relevant to the emergency situation of an evolving pandemic.


Assuntos
Teste de Ácido Nucleico para COVID-19/normas , COVID-19 , Ácidos Nucleicos , Bélgica , COVID-19/diagnóstico , Humanos , Ácidos Nucleicos/análise , RNA Viral/análise , Reprodutibilidade dos Testes , República da Coreia , SARS-CoV-2 , Sensibilidade e Especificidade , Reino Unido
5.
Genome Med ; 16(1): 111, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252069

RESUMO

BACKGROUND: Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Workflows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investigated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, which allows the selective sequencing of known pathogens and could improve sensitivity. METHODS: We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illumina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock community in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers. RESULTS: Capture with the Twist CVRP increased sensitivity by at least 10-100-fold over untargeted sequencing, making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitivity at high viral loads (60,000 gc/ml), at lower viral loads (600-6000 gc/ml), longer and more costly sequencing runs would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing but possible with both the CVRP and ONT. CONCLUSIONS: Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal method will depend on the clinical context.


Assuntos
Metagenômica , Vírus , Metagenômica/métodos , Humanos , Vírus/genética , Vírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Viroses/diagnóstico , Viroses/virologia , Metagenoma , Sensibilidade e Especificidade
6.
J Clin Virol ; 173: 105695, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38823290

RESUMO

Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.


Assuntos
Benchmarking , Metagenômica , Sensibilidade e Especificidade , Vírus , Metagenômica/métodos , Metagenômica/normas , Humanos , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Viroses/diagnóstico , Viroses/virologia , Biologia Computacional/métodos
7.
Heliyon ; 9(9): e19854, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809666

RESUMO

Metagenomic next-generation sequencing (mNGS) is an untargeted technique capable of detecting all microbial nucleic acid within a sample. This protocol outlines our wet laboratory method for mNGS of cerebrospinal fluid (CSF) specimens and tissues from sterile sites. We use this method routinely in our clinical service, processing 178 specimens over the past 2.5 years in a laboratory that adheres to ISO:15189 standards. We have successfully used this protocol to diagnose multiple cases of encephalitis and hepatitis.

8.
JAC Antimicrob Resist ; 5(3): dlad056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193005

RESUMO

Background: WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives: A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods: Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results: For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions: This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.

9.
Elife ; 122023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732733

RESUMO

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low-frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is partially maintained among repeated serial samples from the same host, it can transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.


During an infectious disease outbreak, tracing who infected whom allows public health scientists to see how a pathogen is spreading and to establish effective control measures. Traditionally, this involves identifying the individuals an infected person comes into contact with and monitoring whether they also become unwell. However, this information is not always available and can be inaccurate. One alternative is to track the genetic data of pathogens as they spread. Over time, pathogens accumulate mutations in their genes that can be used to distinguish them from one another. Genetically similar pathogens are more likely to have spread during the same outbreak, while genetically dissimilar pathogens may have come from different outbreaks. However, there are limitations to this approach. For example, some pathogens accumulate genetic mutations very slowly and may not change enough during an outbreak to be distinguishable from one another. Additionally, some pathogens can spread rapidly, leaving less time for mutations to occur between transmission events. To overcome these challenges, Torres Ortiz et al. developed a more sensitive approach to pathogen genetic testing that took advantage of the multiple pathogen populations that often coexist in an infected patient. Rather than tracking only the most dominant genetic version of the pathogen, this method also looked at the less dominant ones. Torres Ortiz et al. performed genome sequencing of SARS-CoV-2 (the virus that causes COVID-19) samples from 451 healthcare workers, patients, and patient contacts at participating London hospitals. Analysis showed that it was possible to detect multiple genetic populations of the virus within individual patients. These subpopulations were often more similar in patients that had been in contact with one another than in those that had not. Tracking the genetic data of all viral populations enabled Torres Ortiz et al. to trace transmission more accurately than if only the dominant population was used. More accurate genetic tracing could help public health scientists better track pathogen transmission and control outbreaks. This may be especially beneficial in hospital settings where outbreaks can be smaller, and it is important to understand if transmission is occurring within the hospital or if the pathogen is imported from the community. Further research will help scientists understand how pathogen population genetics evolve during outbreaks and may improve the detection of subpopulations present at very low frequencies.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2/genética , Filogenia , COVID-19/epidemiologia , Surtos de Doenças , Doenças Transmissíveis/epidemiologia
10.
Clin Microbiol Infect ; 29(10): 1335.e9-1335.e16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364635

RESUMO

OBJECTIVES: Mycobacterium abscessus complex is responsible for 2.6-13.0% of all non-tuberculous mycobacterial pulmonary infections and these are notoriously difficult to treat due to the complex regimens required, drug resistance and adverse effects. Hence, bacteriophages have been considered in clinical practice as an additional treatment option. Here, we evaluated antibiotic and phage susceptibility profiles of M. abscessus clinical isolates. Whole-genome sequencing (WGS) revealed the phylogenetic relationships, dominant circulating clones (DCCs), the likelihood of patient-to-patient transmission and the presence of prophages. METHODS: Antibiotic susceptibility testing was performed using CLSI breakpoints (n = 95), and plaque assays were used for phage susceptibility testing (subset of n = 88, 35 rough and 53 smooth morphology). WGS was completed using the Illumina platform and analysed using Snippy/snp-dists and Discovery and Extraction of Phages Tool (DEPhT). RESULTS: Amikacin and Tigecycline were the most active drugs (with 2 strains resistant to amikacin, and one strain with Tigecycline MIC of 4 µg/mL). Most strains were resistant to all other drugs tested, with Linezolid and Imipenem showing the least resistance, at 38% (36/95) and 55% (52/95), respectively. Rough colony morphotype strains were more phage-susceptible than smooth strains (77%-27/35 versus 48%-25/53 in the plaque assays, but smooth strains are not killed efficiently by those phages in liquid infection assay). We have also identified 100 resident prophages, some of which were propagated lytically. DCC1 (20%-18/90) and DCC4 (22%-20/90) were observed to be the major clones and WGS identified 6 events of possible patient-to-patient transmission. DISCUSSION: Many strains of M. abscessus complex are intrinsically resistant to available antibiotics and bacteriophages represent an alternative therapeutic option, but only for strains with rough morphology. Further studies are needed to elucidate the role of hospital-borne M. abscessus transmission.


Assuntos
Bacteriófagos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Amicacina/farmacologia , Tigeciclina/uso terapêutico , Bacteriófagos/genética , Filogenia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência a Múltiplos Medicamentos , Atenção à Saúde , Testes de Sensibilidade Microbiana
11.
bioRxiv ; 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35702156

RESUMO

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is stable among repeated serial samples from the same host, is transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.

12.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344479

RESUMO

Food animals may be reservoirs of antimicrobial resistance (AMR) passing through the food chain, but little is known about AMR prevalence in bacteria when selective pressure from antimicrobials is low or absent. We monitored antimicrobial-resistant Escherichia coli over 1 year in a UK outdoor pig farm with low antimicrobial usage (AMU) compared to conventional pig farms in the United Kingdom. Short and selected long-read whole-genome sequencing (WGS) was performed to identify AMR genes, phylogeny and mobile elements in 385 E. coli isolates purified mainly from pig and some seagull faeces. Generally, low levels of antimicrobial-resistant E. coli were present, probably due to low AMU. Those present were likely to be multi-drug resistant (MDR) and belonging to particular Sequence Types (STs) such as ST744, ST88 or ST44, with shared clones (<14 Single Nucleotide Polymorphisms (SNPs) apart) isolated from different time points indicating epidemiological linkage within pigs of different ages, and between pig and the wild bird faeces. Although importance of horizontal transmission of AMR is well established, there was limited evidence of plasmid-mediated dissemination between different STs. Non-conjugable MDR plasmids or large AMR gene-bearing transposons were stably integrated within the chromosome and remained associated with particular STs/clones over the time period sampled. Heavy metal resistance genes were also detected within some genetic elements. This study highlights that although low levels of antimicrobial-resistant E. coli correlates with low AMU, a basal level of MDR E. coli can still persist on farm potentially due to transmission and recycling of particular clones within different pig groups. Environmental factors such as wild birds and heavy metal contaminants may also play important roles in the recycling and dissemination, and hence enabling persistence of MDR E. coli. All such factors need to be considered as any rise in AMU on low usage farms, could in future, result in a significant increase in their AMR burden.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fazendas , Genômica , Suínos
13.
J Clin Virol Plus ; 1(3): 100037, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35262020

RESUMO

Reverse transcriptase quantitative PCR (RT-qPCR) is the main diagnostic assay used to detect SARS-CoV-2 RNA in respiratory samples. RT-qPCR is performed by specifically targeting the viral genome using complementary oligonucleotides called primers and probes. This approach relies on prior knowledge of the genetic sequence of the target. Viral genetic variants with changes to the primer/probe binding region may reduce the performance of PCR assays and have the potential to cause assay failure. In this work we demonstrate how two single nucleotide variants (SNVs) altered the amplification curve of a diagnostic PCR targeting the Nucleocapsid (N) gene and illustrate how threshold setting can lead to false-negative results even where the variant sequence is amplified. We also describe how in silico analysis of SARS-CoV-2 genome sequences available in the COVID-19 Genomics UK Consortium (COG-UK) and GISAID databases was performed to predict the impact of sequence variation on the performance of 22 published PCR assays. The vast majority of published primer and probe sequences contain sequence mismatches with at least one SARS-CoV-2 lineage. We recommend that visual observation of amplification curves is included as part of laboratory quality procedures, even in high throughput settings where thresholds are set automatically and that in silico analysis is used to monitor the potential impact of new variants on established assays. Ideally comprehensive in silico analysis should be applied to guide selection of highly conserved genomic regions to target with future SARS-CoV-2 PCR assays.

14.
Viruses ; 12(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182769

RESUMO

Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.


Assuntos
Agaricales/metabolismo , Genoma Viral , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas/isolamento & purificação , Agaricales/virologia , Agaricus/metabolismo , Agaricus/virologia , Sequência de Aminoácidos , Meios de Cultura/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Família Multigênica , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/metabolismo , Análise de Sequência de DNA , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA