Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Am Chem Soc ; 144(26): 11594-11607, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749669

RESUMO

Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.


Assuntos
Cromo , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Metais , Oxirredução
2.
J Biol Inorg Chem ; 27(4-5): 393-403, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488931

RESUMO

Metal ion dysregulation has been implicated in a number of diseases from neurodegeneration to cancer. While defective metal ion transport mechanisms are known to cause specific diseases of genetic origin, the role of metal dysregulation in many diseases has yet to be elucidated due to the complicated function (both good and bad!) of metal ions in the body. A breakdown in metal ion speciation can manifest in several ways from increased reactive oxygen species (ROS) generation to an increase in protein misfolding and aggregation. In this review, we will discuss the role of Zn in the proper function of the p53 protein in cancer. The p53 protein plays a critical role in the prevention of genome mutations via initiation of apoptosis, DNA repair, cell cycle arrest, anti-angiogenesis, and senescence pathways to avoid propagation of damaged cells. p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. Thus, there has been considerable effort dedicated to restoring normal p53 expression and activity to mutant p53. This includes understanding the relative populations of the Zn-bound and Zn-free p53 in wild-type and mutant forms, and the development of metallochaperones to re-populate the Zn binding site to restore mutant p53 activity. Parallels will be made to the development of multifunctional metal binding agents for modulating the aggregation of the amyloid-beta peptide in Alzheimer's Disease (AD).


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Química Bioinorgânica , Humanos , Metalochaperonas/metabolismo , Metais/metabolismo , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Zinco/química
3.
Chemistry ; 27(65): 16161-16172, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34595790

RESUMO

The incorporation of a redox-active nickel salen complex into supramolecular structures was explored via coordination-driven self-assembly with homobimetallic ruthenium complexes (bridged by oxalato or 5,8-dihydroxy-1,4-naphthoquinato ligands). The self-assembly resulted in the formation of a discrete rectangle using the oxalato complex and either a rectangle or a catenane employing the larger naphthoquinonato complex. The formation of the interlocked self-assembly was determined to be solvent and concentration dependent. The electronic structure and stability of the oxidized metallacycles was probed using electrochemical experiments, UV-Vis-NIR absorption, EPR spectroscopy and DFT calculations, confirming ligand radical formation. Exciton coupling of the intense near-infrared (NIR) ligand radical intervalence charge transfer (IVCT) bands provided further confirmation of the geometric and electronic structures in solution.


Assuntos
Etilenodiaminas , Rutênio , Níquel , Oxirredução
4.
Inorg Chem ; 60(22): 16895-16905, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34719930

RESUMO

The ligand electronics of salen manganese nitride complexes directly influence the locus of oxidation and, thus, the reactivity of the resulting oxidized species. This work investigates the influence of tert-butoxy, isopropoxy, and methoxy substituents on the electronics of salen manganese nitride species and includes the first documentation of the para Hammett value for the tert-butoxy substituent (σpara = -0.13 ± 0.03). Each alkoxy-substituted complex undergoes metal-based oxidation to form manganese(VI), and the kinetics of bimolecular homocoupling to form N2 were assessed by cyclic voltammetry. Bis-oxidation of the manganese complexes was investigated at low temperature using cyclic voltammery and UV-vis-near-IR spectroscopy, and in combination with theoretical calculations, plausible electronic structures of the dications are provided.

5.
Chem Soc Rev ; 49(19): 6995-7014, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32869798

RESUMO

Referred to as the "guardian of the genome", p53 is the most frequently mutated protein in cancer and almost all cancers exhibit malfunction along the p53 pathway. As an overexpressed and tumour-specific target, the past two decades have seen considerable dedication to the development of small molecules that aim to restore wild-type function in mutant p53. In this review we collect and communicate the chemical principles involved in small molecule drug design for misfolded proteins in anticancer therapy. While this approach has met with significant challenges including off-target mechanisms that induce cytotoxicity independent of p53 status, major technological advancements in gene sequencing capability and a shift towards personalized medicine holds significant promise for p53 reactivating compounds and could have widespread benefits for the field of cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteína Supressora de Tumor p53/efeitos dos fármacos , Antineoplásicos/farmacologia , Humanos , Terapia de Alvo Molecular , Mutação , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/genética
6.
Inorg Chem ; 59(7): 5133-5148, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207610

RESUMO

The ligands N,N'-bis(3-tert-butyl-5-methoxysalicylidene)-1,2-ethanediamine and N,N'-bis(3-tert-butyl-5-methoxysalicylidene)-1,3-propanediamine were chelated to V(IV)═O (1, 2), Cu(II) (3, 4), Co(II) (5), and Co(III) (6). The X-ray crystal structures of 1-6 were solved. The vanadium center in 1-2 resides in square pyramidal geometry, with an axially bound oxo ligand, whereas the metal ion displays a tetrahedrally distorted square planar geometry in 3-5. The extent of distortion is correlated to the length of the diamine spacer: The longer the linker, the larger the tetrahedral distortions. Complex 6 is octahedral with a bidentate acetate molecule that completes the coordination sphere. All the complexes were characterized by UV-vis and EPR spectroscopies, as well as DFT calculations and electrochemistry. Complexes 1-6 exhibit a reversible one-electron oxidation wave in the range -0.11-0.26 V vs Fc+/Fc. The cations 1+ and 2+ were structurally characterized, showing an octahedral V(V) ion with one oxo and one water molecule coordinated in axial positions. Their vis-NIR spectra are dominated by a band at 727 and 815 nm, respectively, which is assigned to a phenolate-to-vanadium(V) charge transfer (CT) transition. The crystal structures of 3+ and 4+ are congruent with Cu(II)-radical species, wherein the metal center remains four-coordinated. Both feature a Class II (Robin-Day classification scale) IVCT transition at around 1200 nm (ε > 1 mM cm-1), indicative of partial localization of the radical. The structure of 5+ displays a square pyramidal cobalt ion, where the fifth (axial) coordination is occupied by a water molecule. It displays a NIR feature at 1244 nm and is described as intermediate between high spin Co(III) and Co(II) radical. In the presence of acetate the dimer [(5)2(µ-OAc)]+ forms, which was structurally characterized and shows a blue shift and lowering in intensity of the NIR absorption band in comparison to 5+. Complex 6+ is a genuine Co(III) radical complex, wherein the phenoxyl moiety is localized on one side of the molecule.

7.
Chemistry ; 24(67): 17734-17742, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230059

RESUMO

The p53 protein plays a major role in cancer prevention, and over 50 % of cancer diagnoses can be attributed to p53 malfunction. The common p53 mutation Y220C causes local protein unfolding, aggregation, and can result in a loss of Zn in the DNA-binding domain. Structural analysis has shown that this mutant creates a surface site that can be stabilized using small molecules, and herein a multifunctional approach to restore function to p53-Y220C is reported. A series of compounds has been designed that contain iodinated phenols aimed for interaction and stabilization of the p53-Y220C surface cavity, and Zn-binding fragments for metallochaperone activity. Their Zn-binding affinity was characterized using spectroscopic methods and demonstrate the ability of compounds L4 and L5 to increase intracellular levels of Zn2+ in a p53-Y220C-mutant cell line. The in vitro cytotoxicity of our compounds was initially screened by the National Cancer Institute (NCI-60), followed by testing in three stomach cancer cell lines with varying p53 status', including AGS (WTp53), MKN1 (V143A), and NUGC3 (Y220C). Our most promising ligand, L5, is nearly 3-fold more cytotoxic than cisplatin in a large number of cell lines. The impressive cytotoxicity of L5 is further maintained in a NUGC3 3D spheroid model. L5 also induces Y220C-specific apoptosis in a cleaved caspase-3 assay, reduces levels of unfolded mutant p53, and recovers p53 transcriptional function in the NUGC3 cell line. These results show that these multifunctional scaffolds have the potential to restore wild-type function in mutant p53-Y220C.


Assuntos
Complexos de Coordenação/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Microscopia de Fluorescência , Conformação Molecular , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Zinco/química , Zinco/metabolismo
8.
Inorg Chem ; 57(16): 9708-9719, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29616807

RESUMO

The sterically hindered bis(phenol)-dipyrrin ligands HLH3 and PhLH3 were reacted with 1 equiv of copper(II) under ambient conditions to produce the copper radical complexes [Cu(HL)] and [Cu(PhL)]. Their X-ray crystal structures show relatively short C-O bond distances (mean bond distances of 1.287 and 1.291 Å), reminiscent of mixed pyrrolyl-phenoxyl radical species. Complexes [Cu(HL)] and [Cu(PhL)] exhibit rich electronic spectra, with an intense near-IR (NIR) band (ε > 6 mM-1 cm-1) at 1346 and 1321 nm, respectively, assigned to a ligand-to-ligand charger-transfer transition. Both show a reversible oxidation wave ( E1/21,ox = 0.05 and 0.04 V), as well as a reversible reduction wave ( E1/21,red = -0.40 and -0.56 V versus ferrocenium/ferrocene, respectively). The cations ([Cu(HL)]+ and [Cu(PhL)]+) and anions ([Cu(HL)]- and [Cu(PhL)]-) were generated. They all display an axial ( S = 1/2) signal with a copper hyperfine structure in their electron paramagnetic resonance spectra, consistent with ligand-centered redox processes in both reduction and oxidation. Complex [Cu(HL)](SbF6) was cocrystallized with [Cu(HL)]. Oxidation is accompanied by a slight contraction of both the C-O bonds (mean bond distance of 1.280 Å) and the C-C bonds connecting the peripheral rings to the dipyrrin. The cations show vis-NIR bands of up to 1090 nm due to their quinoidal nature. The anions do not show a significant band above 700 nm, in agreement with their bis(phenolate)-dipyrrin character. The radical complexes efficiently catalyze the aerobic oxidation of benzyl alcohol, 1-phenylethanol, and unactivated 2-phenylethanol in basic conditions.

9.
Inorganica Chim Acta ; 481: 151-158, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30581226

RESUMO

The tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with CuII, and the resulting Cu complex (2) was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for 2, as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [2]+ was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a CuII-phenoxyl radical complex in solution. Subsequent resonance Raman (rR) and variable temperature 1H NMR studies, coupled with theoretical calculations, showed that [2• ]+ is a triplet (S = 1) CuII-phenoxyl radical species, with localization of the radical on the more electron-rich aminophenoxide. Attempted isolation of X-ray quality crystals of [2• ]+ afforded [2H]+, with a protonated phenol bonded to CuII, and an additional H-bonding interaction with the SbF6 - counterion. Stoichiometric reaction of dilute solutions of [2• ]+ with benzyl alcohol showed that the complex reacted in a similar manner as the oxidized CuII-salen analogue, and does not exhibit a substrate-binding pre-equilibrium as observed for the oxidized bisaminophenoxide CuII-salan derivative.

10.
J Am Chem Soc ; 138(47): 15299-15302, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933934

RESUMO

Investigation of a series of oxidized nitridomanganese(V) salen complexes with different para ring substituents (R = CF3, tBu, and NMe2) demonstrates that nitride activation is dictated by remote ligand electronics. For R = CF3 and tBu, oxidation affords a Mn(VI) species and nitride activation, with dinitrogen homocoupling accelerated by the more electron-withdrawing CF3 substituent. Employing an electron-donating substituent (R = NMe2) results in a localized ligand radical species that is resistant to N coupling of the nitrides and is stable in solution at both 195 and 298 K.

11.
Inorg Chem ; 55(2): 762-74, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719989

RESUMO

The geometric and electronic structure of a doubly oxidized bimetallic Co complex containing two redox-active salen moieties connected via a 1,2-phenylene linker was investigated and compared to an oxidized monomeric analogue. Both complexes, namely, CoL(1) and Co2L(2), are oxidized to the mono- and dications, respectively, with AgSbF6 and characterized by X-ray crystallography for the monomer and by vis-NIR (NIR = near-infrared) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and density functional theory (DFT) calculations for both the monomer and dimer. Both complexes exhibit a water molecule coordinated in the apical position upon oxidation. [CoL(1)-H2O](+) displays a broad NIR band at 8500 cm(-1) (8400 M(-1) cm(-1)), which is consistent with recent reports on oxidized Co salen complexes (Kochem, A. et al., Inorg. Chem., 2012, 51, 10557-10571 and Kurahashi, T. et al., Inorg. Chem., 2013, 52, 3908-3919). DFT calculations predict a triplet ground state with significant ligand and metal contributions to the singularly occupied molecular orbitals. The majority (∼75%) of the total spin density is localized on the metal, highlighting both high-spin Co(III) and Co(II)L(•) character in the electronic ground state. Further oxidation of CoL(1) to the dication affords a low-spin Co(III) phenoxyl radical species. The NIR features for [Co2L(2)-2H2O](2+) at 8600 cm(-1) (17 800 M(-1) cm(-1)) are doubly intense in comparison to [CoL(1)-H2O](+) owing to the description of [Co2L(2)-2H2O](2+) as two non-interacting oxidized Co salen complexes bound via the central phenylene linker. Interestingly, TD-DFT calculations predict two electronic transitions that are 353 cm(-1) apart. The NIR spectrum of the analogous Ni complex, [Ni2L(2)](2+), exhibits two intense transitions (4890 cm(-1)/26 500 M(-1) cm(-1) and 4200 cm(-1)/21 200 M(-1) cm(-1)) due to exciton coupling in the excited state. Only one broad band is observed in the NIR spectrum for [Co2L(2)-2H2O](2+) as a result of the contracted donor and acceptor orbitals and overall CT character.

12.
Inorg Chem ; 54(12): 5970-80, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26016716

RESUMO

Nickel (Ni(Sal(CF3))) and copper (Cu(Sal(CF3))) complexes of an electron-poor salen ligand were prepared, and their one-electron oxidized counterparts were studied using an array of spectroscopic and theoretical methods. The electrochemistry of both complexes exhibited quasi-reversible redox processes at higher potentials in comparison to the M(Sal(R)) (R = (t)Bu, OMe, NMe2) analogues, in line with the electron-withdrawing nature of the para-CF3 substituent. Chemical oxidation, monitored by ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, afforded their corresponding one-electron oxidized products. Ligand-based oxidation was observed for [Ni(Sal(CF3))](+•), as evidenced by sharp NIR transitions in the UV-vis-NIR spectrum and a broad isotropic signal at g = 2.067 by solution electron paramagnetic resonance (EPR) spectroscopy. Such sharp NIR transitions observed for [Ni(Sal(CF3))](+•) are indicative of a delocalized electronic structure, which is in good agreement with electrochemical measurements and density functional theory (DFT) calculations. In addition, the increased Lewis acidity of [Ni(Sal(CF3))](+•), evident from the EPR g-value and DFT calculations, was further quantified by the binding affinity of axial ligands to [Ni(Sal(CF3))](+•). For [Cu(Sal(CF3))](+), an intense ligand-to-metal charge transfer band at 18 700 cm(-1) in the UV-vis-NIR spectrum was observed, which is diagnostic for the formation of a Cu(III) species [J. Am. Chem. Soc., 2008, 130, 15448-15459]. The Cu(III) character for [Cu(Sal(CF3))](+) is further confirmed by (19)F NMR analysis. Taken together, these results show that the electron-deficient salen ligand H2Sal(CF3) increases the Lewis acidity of the coordinating metal center.


Assuntos
Cobre/química , Etilenodiaminas/química , Níquel/química , Compostos Organometálicos/química , Técnicas de Química Sintética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxirredução , Espectroscopia Fotoeletrônica , Piridinas/química , Espectrofotometria Ultravioleta
13.
Inorg Chem ; 53(11): 5810-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24881487

RESUMO

Fe(III) complexes of the symmetric (2S,2'S)-[N,N'-bis(1-(2-hydroxy-3,5-di-tert-butylphenylmethyl))]-2,2'-bipyrrolidine (H2L(1)) and dissymmetric (2S,2'S)-[N,N'-(1-(2-hydroxy-3,5-di-tert-butylphenylmethyl))-2-(pyridylmethyl)]-2,2'-bipyrrolidine (HL(2)) ligands incorporating the bipyrrolidine backbone were prepared, and the electronic structure of the neutral and one-electron oxidized species was investigated. Cyclic voltammograms (CV) of FeL(1)Cl and FeL(2)Cl2 showed expected redox waves corresponding to the oxidation of phenoxide moieties to phenoxyl radicals, which was achieved by treating the complexes with 1 equiv of a suitable chemical oxidant. The clean conversion of the neutral complexes to their oxidized forms was monitored by UV-vis-NIR spectroscopy, where an intense π-π* transition characteristic of a phenoxyl radical emerged ([FeL(1)Cl](+•): 25,500 cm(-1) (9000 M(-1) cm(-1)); [FeL(2)Cl2](+•): 24,100 cm(-1) (8300 M(-1) cm(-1)). The resonance Raman (rR) spectra of [FeL(1)Cl](+•) and [FeL(2)Cl2](+•) displayed the characteristic phenoxyl radical ν7a band at 1501 and 1504 cm(-1), respectively, confirming ligand-based oxidation. Electron paramagnetic resonance (EPR) spectroscopy exhibited a typical high spin Fe(III) (S = 5/2) signal for the neutral complexes in perpendicular mode. Upon oxidation, a signal at g ≈ 9 was observed in parallel mode, suggesting the formation of a spin integer system arising from magnetic interactions between the high spin Fe(III) center and the phenoxyl radical. Density functional theory (DFT) calculations further supports this formulation, where weak antiferromagnetic coupling was predicted for both [FeL(1)Cl](+•) and [FeL(2)Cl2](+•).

14.
Inorg Chem ; 53(19): 10195-202, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25254603

RESUMO

One-electron-oxidized Ni(III)-phenoxide complexes with salen-type ligands, [Ni(salen)py2](2+) ([1(en)-py](2+)) and [Ni(1,2-salcn)py2](2+) ([1(cn)-py](2+)), with a five-membered chelate dinitrogen backbone and [Ni(salpn)py2](2+) ([2(pn)-py](2+)), with a six-membered chelate backbone, have been characterized with a combination of experimental and theoretical methods. The five-membered chelate complexes [1(en)-py](2+) and [1(cn)-py](2+) were assigned as Ni(III)-phenoxyl radical species, while the six-membered chelate complex [2(pn)-py](2+) was concluded to be a Ni(II)-bis(phenoxyl radical) species with metal-centered reduction in the course of the one-electron oxidation of the Ni(III)-phenoxide complex [2(pn)-py](+). Thus, the oxidation state of the one-electron-oxidized Ni(III) salen-type complexes depends on the chelate ring size of the dinitrogen backbone.


Assuntos
Níquel/química , Compostos Organometálicos/química , Óxidos/química , Elétrons , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução
15.
Proc Natl Acad Sci U S A ; 108(46): 18600-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065750

RESUMO

Integrating sulfanyl substituents into copper-bonded phenoxyls significantly alters their optical and redox properties and provides insight into the influence of cysteine modification of the tyrosine cofactor in the enzyme galactose oxidase. The model complexes [1(SR2)](+) are class II mixed-valent Cu(II)-phenoxyl-phenolate species that exhibit intervalence charge transfer bands and intense visible sulfur-aryl π → π* transitions in the energy range, which provides a greater spectroscopic fidelity to oxidized galactose oxidase than non-sulfur-bearing analogs. The potentials for phenolate-based oxidations of the sulfanyl-substituted 1(SR2) are lower than the alkyl-substituted analogs by up to ca. 150 mV and decrease following the steric trend: -S(t)Bu > -S(i) Pr > -SMe. Density functional theory calculations suggest that reducing the steric demands of the sulfanyl substituent accommodates an in-plane conformation of the alkylsulfanyl group with the aromatic ring, which stabilizes the phenoxyl hole by ca. 8 kcal mol(-1) (1 kcal = 4.18 kJ; 350 mV) through delocalization onto the sulfur atom. Sulfur K-edge X-ray absorption spectroscopy clearly indicates a contribution of ca. 8-13% to the hole from the sulfur atoms in [1(SR2)](+). The electrochemical results for the model complexes corroborate the ca. 350 mV (density functional theory) contribution of hole delocalization on to the cysteine-tyrosine cross-link to the stability of the phenoxyl radical in the enzyme, while highlighting the importance of the in-plane conformation observed in all crystal structures of the enzyme.


Assuntos
Química/métodos , Cobre/química , Galactose Oxidase/química , Fenóis/química , Enxofre/química , Domínio Catalítico , Eletroquímica/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Oxirredução , Oxigênio/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Temperatura , Raios Ultravioleta
16.
Chem Commun (Camb) ; 60(11): 1372-1388, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38204416

RESUMO

Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-ß (Aß) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aß peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aß peptide and mutant p53 protein, a common therapeutic approach may be applicable.


Assuntos
Doença de Alzheimer , Neoplasias , Humanos , Peptídeos beta-Amiloides/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/uso terapêutico , Proteína Supressora de Tumor p53/genética , Doença de Alzheimer/metabolismo
17.
Chem Commun (Camb) ; 60(29): 3914-3917, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502135

RESUMO

A series of [Au(CN)4]- salts with lanthanide 2,2'-bipyridine dioxide cations features Au(III) aurophilic interactions between [Au(CN)4]- groups, with Au⋯Au distances of 3.3603(4) Šand 3.4354(4) Šthat are shorter than any previously reported. Computations predict the interactions to be weakly attractive; packing effects appear to also contribute to the close contacts. The materials are emissive: there is no Au(III)-based luminescence, but for Ln = Eu the PLQY of 29% is surprisingly high compared to related analogues.

18.
Chem Sci ; 15(6): 2211-2220, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332824

RESUMO

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.

19.
J Inorg Biochem ; 251: 112433, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043136

RESUMO

The p53 protein plays a major role in cancer prevention, and over 50% of cancer diagnoses can be attributed to p53 malfunction. p53 incorporates a structural Zn site that is required for proper protein folding and function, and in many cases point mutations can result in loss of the Zn2+ ion, destabilization of the tertiary structure, and eventual amyloid aggregation. Herein, we report a series of compounds designed to act as small molecule stabilizers of mutant p53, and feature Zn-binding fragments to chaperone Zn2+ to the metal depleted site and restore wild-type (WT) function. Many Zn metallochaperones (ZMCs) have been shown to generate intracellular reactive oxygen species (ROS), likely by chelating redox-active metals such as Fe2+/3+ and Cu+/2+ and undergoing associated Fenton chemistry. High levels of ROS can result in off-target effects and general toxicity, and thus, careful tuning of ligand Zn2+ affinity, in comparison to the affinity for other endogenous metals, is important for selective mutant p53 targeting. In this work we show that by using carboxylate donors in place of pyridine we can change the relative Zn2+/Cu2+ binding ability in a series of ligands, and we investigate the impact of donor group changes on metallochaperone activity and overall cytotoxicity in two mutant p53 cancer cell lines (NUGC3 and SKGT2).


Assuntos
Metalochaperonas , Proteína Supressora de Tumor p53 , Zinco , Humanos , Linhagem Celular Tumoral , Quelantes , Metalochaperonas/química , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismo , Ligação Proteica
20.
J Biol Inorg Chem ; 18(7): 831-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23925425

RESUMO

Two new rhenium complexes containing pyridine-triazole (pyta) and quinoline-triazole (quinta) ligands with attached glutamine-targeting agents have been characterized and tested for uptake in the HT-29 human colon adenocarcinoma cell line. The glutamine moiety in Re(CO)3Br(pyta) (1) and Re(CO)3Br(quinta) (2) remains pendant in solution. Both complexes exhibit absorptions in the 300-400-nm range with metal-to-ligand charge transfer (MLCT) character, as predicted by time-dependent density functional theory calculations. Geometrical analysis by theoretical calculations provides information on the cationic complexes 1 (+) and 2 (+) resulting from aquo for halide ligand exchange under aqueous conditions. The emissive properties of both complexes were studied under aqueous conditions, and the measured quantum yields were 0.46 % for 1 (+) and 0.18 % for 2 (+). The large Stokes shifts and oxygen sensitivity of the emission suggest a (3)MLCT process for both complexes. Cell studies in the HT-29 cell line demonstrate that both complexes are nontoxic over a large concentration range (0-1.4 mM). Preliminary uptake studies show that 2 (+), but not 1 (+), displays significant concentration-dependent uptake at 3 and 24 h.


Assuntos
Glutamina/química , Compostos Organometálicos/síntese química , Rênio/química , Transporte Biológico , Técnicas de Química Sintética , Células HT29 , Humanos , Modelos Moleculares , Conformação Molecular , Fenômenos Ópticos , Compostos Organometálicos/metabolismo , Compostos Organometálicos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA