Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 477: 40-5, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27240242

RESUMO

HYPOTHESIS: The phase behavior of amphiphiles is known to depend on their solvent environment. The organic character of ionic liquids suggested the possibility to tune surfactant aggregation, even in the absence of water, by selection of appropriate ionic liquid chemistry. To that end the behavior of the surfactant sodium dodecylsulfate in a chemically similar imidazolium ionic liquid, 1-ethyl-3-methyl imidazolium ethylsulfate, was explored. EXPERIMENTS: The solubility of sodium dodecylsulfate in 1-ethyl-3-methyl imidazolium ethylsulfate was determined, establishing the Krafft temperature. Tensiometry was performed to obtain interfacial properties such as the surface excess and area per molecule. Pulsed-field gradient spin-echo NMR was used to determine the diffusion coefficients of all the major species, including micelles, as a function of surfactant concentration. Importantly, all three methods provided consistent values for the critical micelle concentration. FINDINGS: Analysis of tensiometry data suggests, and is confirmed by NMR results, that the ionic liquid ions are incorporated along with surfactants into micelles, revealing a complex micellization behavior. In light of these findings past studies with ternary mixtures of surfactants, ionic liquids, and water may merit additional scrutiny. Given the large number of ionic liquids, this work suggests opportunities to further control micelle formation and properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA